ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГБУ «ВНИИМС»)

СОГЛАСОВАНО

Заместитель директора по производственной метрологии ФГБУ «ВНИИМС» А.Е. Коломин МЛ 2021 г.

Государственная система обеспечения единства измерений

АКСЕЛЕРОМЕТРЫ СЕЙСМИЧЕСКИЕ ЦИФРОВЫЕ VLA МЕТОДИКА ПОВЕРКИ

МП 204/3-32-2021

г. Москва 2021

АКСЕЛЕРОМЕТРЫ СЕЙСМИЧЕСКИЕ ЦИФРОВЫЕ VLA МЕТОДИКА ПОВЕРКИ

МЕТОДИКА ПОВЕРКИ МП 204/3-32-2021

Введена в действие с « » 20 г.

ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика распространяется на акселерометры сейсмические цифровые VLA (далее - акселерометры), изготовленные ООО НПК «Вулкан», г. Москва и устанавливает методику первичной и периодической поверок.

Акселерометры сейсмические цифровые VLA (далее - акселерометры) предназначены для измерений среднеквадратических значений (далее - СКЗ) и амплитудных значений виброускорения.

Принцип действия акселерометров основан на измерении и преобразовании сигнала, возникающего при смещении инерционной массы микроэлектромеханической системы. Далее данный сигнал преобразуется в цифровую форму при помощи встроенного аналогового-цифрового преобразователя (АЦП).

Акселерометры сейсмические цифровые VLA представляют собой трехкомпонентые MEMS акселерометры, выпускаемые в двух модификациях: VLA-3SMD и VLA-3SMDT, которые отличаются между собой диапазоном рабочих температур.

При определении метрологических характеристик поверяемого средства измерений используется метод прямых измерений в соответствии с Государственной поверочной схемой для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 27.12.2018 г. № 2772 и в соответствии с ГОСТ Р 8.852-2013 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений единиц длины, скорости, ускорения и плоского угла для сейсмометрии».

При проведении поверки должна быть обеспечена прослеживаемость поверяемого СИ к Государственному первичному эталону единиц длины, скорости и ускорения при колебательном движении твердого тела (ГЭТ 58-2018) и к Государственному первичному специальному эталону единиц длины, скорости, ускорения и плоского угла для сейсмометрии (ГЭТ159-2011 ГПСЭ).

При проведении поверки в качестве средств поверки должен использоваться эталон 1-го разряда и выше по Государственной поверочной схеме для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 27.12.2018 г. № 2772 и вторичный эталон и выше по ГОСТ Р 8.852-2013 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений единиц длины, скорости, ускорения и плоского угла для сейсмометрии»

Методика поверки допускает возможность поверки СИ на меньшем числе поддиапазонов амплитуд с указанием объема выполненной поверки в свидетельстве о поверке.

1. ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

1.1.	При проведении	первичной и	периодической	поверок,	выполняют	операции,
указанные в	таблице 1.					
						Таблица 1

			Гиолици Г	
Наименование	Номер	Проведение		
операции	пункта	операции п	риповерке	
1		первичной	периодической	
1	2	3	4	
Внешний осмотр	6	да	да	
Проверка программного обес-	7			
печения средства измерений	7	да не	нет	
Подготовка к проведению по-				
верки и опробование средства	8	да	да	
измерения		-		
Определение относительной				
погрешности измерений виб-	0.1			
роускорения в диапазоне ра-	9.1	да	да	
бочих амплитуд и частот*, %				
Подтверждение соответствия				
средства измерения метроло-	10	да	да	
гическим требованиям				
Оформление результатов по-	11	ПО	ПО	
верки	11	Да	да	
* Примечание – поверку провод	ить только по	о среднеквадратическом	у значению.	

2. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

2.1. При проведении поверки необходимо применять основные, приведенные в таблице 2.

		Таблица 2
Номер пункта	Метрологические и технические тре-	Перечень рекомендуемых средств по-
поверки	бования к средствам поверки, необхо-	верки
	димые для проведения поверки	
5.1	Средство измерений температуры от -	Прибор комбинированный Testo 622,
	10 °С до +60 °С с погрешностью не	рег. № 53505-13
	более ±1 °С;	
	Диапазоны: измерения температуры	
	от -10 до +60 °С, ПГ ±0,4 °С; измере-	
	ния относительной влажности от 10	
	до 95 %, ПГ ±3 %; измерения абсо-	
	лютного давления от 300 до 1200 гПа,	
	ПГ ±5 гПа	
9.1	Поверочная виброустановка 1-го раз-	Установка для поверки и калибровки
	ряда в соответствии с приказом Рос-	виброизмерительных преобразовате-
	стандарта от 27 декабря 2018 г. №	лей 9155 (рег. № 68875-17)
	2772	
	Вторичный эталон в соответствии с	ГВЭТ 159-03-2009 «Поверочная сей-
	ГОСТ Р 8.852-2013 «Государственная	смометрическая вертикальная уста-
	система обеспечения единства изме-	новка ПСВУ» ("Диапазоны частот от
	рений. Государственная поверочная	1.10 ⁻² до 20 Гц, виброускорения:
	схема для средств измерений единиц	4·10 ⁻⁷ ÷ 10 м/с ² ; виброскорости: 6·10 ⁻⁵

3

Номер пункта	Метрологические и технические тре-	Перечень рекомендуемых средств по-
поверки	оования к средствам поверки, неоохо-	верки
5.1	Средство измерений температуры от - 10 °C до +60 °C с погрешностью не более ±1 °C; Диапазоны: измерения температуры от -10 до +60 °C, ПГ ±0,4 °C; измере- ния относительной влажности от 10 до 95 %, ПГ ±3 %; измерения абсо- лютного давления от 300 до 1200 гПа, ПГ ±5 гПа	Прибор комбинированный Testo 622, per. № 53505-13
	длины, скорости, ускорения и плоско- го угла для сейсмометрии»	 ÷ 4·10⁻¹ м/с; виброперемещений: 1·10⁻⁴ ÷ 2·10⁻² м; ПГ – от 0,2 до 0,7 % PH от 0,4 до 1%

2.2. Допускается применять другие средства поверки, не приведенные в перечне, но обеспечивающие определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

3. ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

3.1. К поверке допускаются лица, имеющие необходимые навыки по работе с подобными СИ и ознакомленные с эксплуатационной документацией.

4. ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНО СТИ ПРОВЕДЕНИЯ ПОВЕРКИ

4.1. При проведении поверки должны соблюдаться требования безопасности, установленные ГОСТ 12.1.019-2017, ГОСТ 12.2.091-2012 и эксплуатационной документацией фирмы-изготовителя.

5. ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °С	20 ± 5
- относительная влажность окружающего воздуха, %	60 ± 20
- атмосферное давление, кПа	101 ± 4

6. ВНЕШНИЙ ОСМОТР

6.1. При внешнем осмотре устанавливают соответствие внешнего вида средства измерений описанию и изображению, приведенному в описании типа, комплектности и маркировки, а также отсутствие механических повреждений корпусов, соединительных кабелей и разъемов.

6.2. В случае несоответствия хотя бы одному из выше указанных требований, акселерометр считается непригодным к применению, поверка не производится до устранения выявленных замечаний.

7. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Запустите установленное ПО (VLA-calibrator) на ПК.

При запуске ПО печатает номер версии (рисунок 7)

Рисунок 7 – Идентификационные данные ПО VLA-calibrator

Откройте браузер по выбору (рекомендуется Google Chrome) и введите локальный IP акселерометра при подключении напрямую к ПК (192.168.55.55) или введите назначенный инструменту адрес от DHCP сервера в локальной сети.

Откроется окно ввода логина и пароля. Введите имя пользователя и пароль (по умолчанию admin admin) и нажмите на кнопку login.

В верхней части веб-интерфейса указаны версии ПО цифрового акселерометра как показано на рисунке 8

Digital Accelerometer VLA-3SMD HW version 2.01, SW version 2.02, S/N XXXXXX НПК ВУЛКАН www.vulcan-inc.ru +7 (495) 585 9733

	Status	
Data acquisition	Time synchronization	Temperature inside housing
NOT running	Synchronised to NTP	No data

Рисунок 8. Версии ПО цифрового акселерометра Версии ПО должна быть не ниже указанной в таблице 3.

Таблица 3 – Идентификационные данные прог	граммного обеспечения
---	-----------------------

Идентификационные признаки	Значение
Внешняя часть ПО	
Идентификационное наименование ПО	VLA-calibrator
Номер версии (идентификационный номер) ПО	не ниже 0.01
Встроенная часть ПС)
Идентификационное наименование ПО	vla_fw (SW)
Номер версии (идентификационный номер) ПО	не ниже 2.02

При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с п. 11.2.

8. ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЯ

Закрепить акселерометр цифровой на вибростоле эталонной виброустановки 1-го разряда.

С помощью кабеля (которым оснащен цифровой акселерометр) поверяемый акселерометр подключить к персональному компьютеру (далее - ПК) с установленным соответствующим ПО или локальной сети при помощи разъема 8p8c (RJ-45). Подключить цифровой акселерометр к источнику питания. Инструмент запускается автоматически после подачи питания.

Подождите до полной загрузки (обычно это занимает 1-2 минуты). Откройте браузер по выбору (рекомендуется Google Chrome) и введите локальный IP акселерометра при подключении напрямую к ПК (192.168.55.55) или введите назначенный инструменту адрес от DHCP сервера в локальной сети.

Откроется окно ввода логина и пароля. Введите имя пользователя и пароль (по умолчанию admin admin) и нажмите на кнопку login

S/N XXXXXX W	eb Inter
Username	
Password	
Login	

Рисунок 1. Окно ввода логина пароля в веб-интерфейс цифрового акселерометра

Сконфигурируйте акселерометр как указано в разделе РЭ, а именно – задайте необходимое время записи эксперимента, а также частоту отсчетов.

гаолица Э. г скоменд	усмые параметры эксперимент	a
Частота подаваемого сигна-	Рекомендуемая частота от-	Рекомендумая длительность
ла	счетов	эксперимента
0-15 Гц	200 отс/с	1 минута
15-50 Гц	1000 отс/с	2 минуты
50 -100 Гц	2000 отс/с	3 минуты

T C 1	D		
	PeroMentiveMite	TODOMOTOTI	OVOTIONIUMOTITO
raomina J.	т скомендуемые	парамстры	эксперимента

Задайте первое значение подаваемого сигнала на эталонной виброустановке 1-го разряда. Убедитесь, что установка вышла на заданный режим эксперимента. Нажмите на кнопку Start data acquisition

Рисунок 2. Окно веб-интерфейса цифрового акселерометра.

После нажатия на кнопку Start data acquisition в веб интерфейсе изменится состояние записи (Data acquisition)

gital Accelerometer VLA-3SMD V version 2.01, SW version 2.02, S/N XXXXXX		НПК ВУЛКА www.vulcan-inc.ri +7 (495) 585 973	
Data acquisition	Time synchronization	Temperature inside housing	
Running	Synchronised to NTP	30°C	
	Configuration		
Data acquisition	Network settings	Time synchronization	
	Control		
Stop data acquisition	Test sensor response	Reboot	

Рисунок 3. Окно веб-интерфейса цифрового акселерометра после начала записи.

Подождите необходимое для эксперимента время и нажмите на кнопку Stop data acquisition. Зайдите в файловый менеджер (Data file manager) и скачайте полученный файл.

1				2.
0	Name	Size	Modified	Actions
	data_20220325_151113.msd	1 KB	25.03.22 18:11	X=10=±
	Full size: 1 KiB, files: 1, folders: 0			
	Select al 📋 Unselect al 🥔 Invert selection			
Del	ete Pack Copy			
Ho	ne			

Рисунок 4. Окно файлового менеджера цифрового акселерометра.

Запустите установленное ПО (VLA-calibrator) на ПК и введите путь до скачанного файла.

Рисунок 5. Окно ПО расчета RMS значений записанных данных цифрового акселерометра.

Ведите указанную в паспорте инструмента чувствительность прибора. В результате работы ПО выдаст среднее квадратичное и пиковое значение ускорение по каждому каналу записанного файла. Сравните это значение с эталонным (заданным).

VLA-calibrator версия 0.01
Пожалуйста, введите путь файла
Пожалуйста, введите чувствительность
3 Trace(s) in Stream:
NN.VTEST.LL.XXX 2022-02-10T14:56:19.272800Z - 2022-02-10T14:57:59.271800Z 1000.0 Hz, 100000 samples
NN.VTEST.LL.YYY 2022-02-10T14:56:19.2728007 - 2022-02-10T14:57:59.2718007 1000.0 Hz, 100000 samples
NN.VTEST.LL.ZZZ 2022-02-10T14:56:19.272800Z - 2022-02-10T14:57:59.271800Z 1000.0 Hz, 100000 samples
Канал ХХХ
Ускорение среднеквадратичное 0.00507
Ускорение пиковое 0.007148
Канал ҮҮҮ
Ускорение среднеквадратичное 0.001842
Ускорение пиковое 0.002597
Канал ZZZ
Ускорение среднеквадратичное 0.268531
Ускорение пиковое 0.378629
Process finished with exit code 0

Рисунок 6. Расчет СКЗ и пиковых значений ускорения, записанных данных цифрового акселерометра по каждому каналу.

Затем повторите эксперимент задав другую частоту и амплитуду.

Затем повторите эксперимент для каждой оси.

Если измеренные значения и заданные отличаются более чем на ±2,5 %, то поверку прекращают.

9. ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

9.1. Определение относительной погрешности измерений виброускорения в диапазоне рабочих амплитуд и частот.

Установить поверяемый акселерометр на эталонную поверочную виброустановку в соответствии с эксплуатационной документацией.

С помощью поверочной виброустановки задать не менее пяти значений среднеквадратических значений (далее - СКЗ) виброускорения (включая минимальное значение диапазона измерений и максимально возможное для поверочной виброустановки на задаваемой частоте, на частотах где позволяет эталонная виброустановка воспроизводить минимальное и (или) максимальное значение виброускорения необходимо задавать данные крайние точки) при значениях частот третьоктавного ряда из рабочего диапазона частот поверяемого акселерометра. Частотный ряд, в котором определятся относительная погрешность, должен включать нижнее и верхнее значения рабочего диапазона частот и число фиксированных частот не менее 10. Значения частот выбирают из ряда: 0,01; 0,05; 0,1; 0,6; 0,8; 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 Гц.

Измеренное значение СКЗ виброускорения определить по монитору компьютера.

Измеренное значение указано в g, пересчитать в м/c² по формуле (1):

$$A_{_{\rm H3M\,M/c^2}} = \frac{A_{_{\rm H3M}\,g}}{9,8154} \tag{1}$$

10. ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЯ МЕТРО-ЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

10.1. Относительную погрешность измерений виброускорения определяют по формуле (2):

$$\delta_{\%} = \frac{A_{\mu_{3M}} - A_{3a\mu}}{A_{3a\mu}} \cdot 100 \%$$
 (2)

где $A_{u_{3M}}$ – измеренное поверяемым акселерометром СКЗ виброускорения, м/c²; A_{3ad} – заданное на поверочной виброустановке СКЗ виброускорения, м/c².

Акселерометр считается пригодным к применению (соответствующим метрологическим требованиям) если он соответствует требованиям каждого пункта данной методики поверки и значения относительных погрешностей измерений не превышают допустимых значений, указанных в описании типа.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

11.1.Акселерометр, прошедший поверку с положительным результатом, признается пригодным и допускается к применению.

Результаты поверки акселерометра передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений.

11.2. При отрицательных результатах поверки в соответствии с действующим законодательством в области обеспечения единства измерений РФ на акселерометр оформляется извещение о непригодности к применению.

11.3. Протокол поверки оформляется в произвольном виде.

Зам. начальника отдела 204 ФГБУ «ВНИИМС» В.П. Кывыржик

Начальник лаборатории 204/3 ФГБУ «ВНИИМС»

А.Г. Волченко

Инженер 1 категории лаборатории 204/3 ФГБУ «ВНИИМС»

Д.В. Матвеев