

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ И МОСКОВСКОЙ ОБЛАСТИ» (ФБУ «РОСТЕСТ-МОСКВА»)

СОГЛАСОВАНО

Заместитель генерального директора ФБУ «Ростест-Москва»

А.Д. Меньшиков М.П. «Пожабря 2021 г.

Государственная система обеспечения единства измерений

ДАТЧИКИ УРОВНЯ ТОПЛИВА TKLS

Методика поверки

РТ-МП-1011-449-2021

г. Москва 2021 г.

1 Общие положения

Настоящая методика поверки распространяется на датчики уровня топлива TKLS (далее – датчики) и устанавливает методику ее первичной и периодической поверок.

Выполнение всех требований настоящей методики обеспечивает прослеживаемость поверяемых датчиков к гэт2-2021 Государственный первичный эталон единицы длины – метра.

Для обеспечения реализации методики поверки при определении метрологических характеристик применяется метод прямых измерений.

2 Перечень операций поверки средства измерений

2.1 При проведении поверки выполняют операции, указанные в таблице 1.

Табли	ца 1	- (Операции	поверки
-------	------	-----	----------	---------

Наименование операции	Методы поверки (номер	Обязательность проведения при поверке	
	пункта)	первичной	периодической
Внешний осмотр средства измерений	7	Дa	Дa
Подготовка к поверке и опробование средства измерений	8	Да	Да
Проверка идентификации программного обеспечения средства измерений	9	Да	Да
Определение приведенной погрешности измерений уровня	10	Да	Да
Подтверждение соответствия средства измерений метрологическим требованиям	11	Да	Да

3 Требования к условиям проведения поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха от 15 °C до 25 °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа;
- поверочная среда диэлектрическая жидкость (далее жидкость).

– владелец датчика или лицо, представившее его на поверку, предоставляет в организацию, проводящую поверку датчиков, преобразователь интерфейсов USB-RS232 ТКLS-Prog-232 или USB-RS485 TKLS-Prog-485 (при необходимости).

4 Требование к специалистам, осуществляющим поверку

К проведению поверки допускаются лица, имеющие:

- необходимую квалификацию и опыт поверки средств измерений уровня;
- изучившие руководство по эксплуатации (РЭ) на СИ и средства поверки;
- изучившие настоящую методику поверки;
- прошедшие инструктаж по технике безопасности в установленном порядке.

5 Метрологические и технические требования к средствам поверки

5.1 При проведении поверки датчиков применяют средства поверки, указанные в таблице 2, и вспомогательные технические средства, указанные в таблице 3.

5.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные эталоны единиц величин и средства измерений, обеспечивающие требуемую точность передачи единиц величин поверяемому средству измерений.

5.3 Эталоны единиц величин должны соответствовать требованиям Положения об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений, утвержденного Постановлением Правительства Российской Федерации от 23 сентября 2010 г. № 734.

5.4 Средства измерений должны быть утвержденного типа, поверены и соответствовать требованиям методик поверки.

1 а о л и ц а 2 – Средства поверки				
Номер пункта	Наименование	Требуемые метрологические характеристики средства поверки		
документа по	рекомендуемого			
поверке	средства поверки			
8, 10	Рулетка измерительная металлическая Р50УЗК (регистрационный номер в Федеральном информационном фонде	диапазон измерений от 0 до 3000 мм	3-й класс точности по ГОСТ 7502-98	
	35281-07)			

Таблица 3 – Вспомогательные технические средства

Номер пункта документа по поверке	Наименование вспомогательного технического средства	Требуемые технические характеристики вспомогательных технических средств
	Преобразователь интерфейсов	USB-RS232 TKLS-Prog-232 (для TKLS-L A- RS232) USB-RS485 TKLS-Prog-485 (для всех остальных датчиков)
8,10	Персональный компьютер с (далее – ПК)	Операционная система Windows XP/7/8/10 и выше с программным обеспечением (далее – ПО) TKLSConf и AGUSB (TKUSBDriver) (с сайтов изготовителя www.tk-nav.ru или www.tkls.ru)
	Мобильное устройство (только для исполнений TKLS и TKLS во взрывозащищенном исполнении с барьером искрозащиты «TK.iSB)	Операционная система Android или iOS и установленным ПО TKLS Tool
	Емкость	Высота не менее длины чувствительного элемента датчика (далее – ЧЭ)

6 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки должны выполняться следующие требования по обеспечению безопасности:

- к проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности на рабочем месте и имеющие группу по технике электробезопасности не ниже третьей;

вся аппаратура, питающаяся от сети переменного тока, должна быть заземлена;

- все разъемные соединения линий электропитания и линий связи должны быть исправны;

 соблюдать требования безопасности, указанные в технической документации на датчики, применяемые средства поверки и вспомогательные технические средства;

- поверитель должен соблюдать правила пожарной безопасности, действующие в организации.

7 Внешний осмотр средства измерений

При внешнем осмотре датчика проверяют маркировку, комплектность, состояние коммуникационных и энергетических линий связи, отсутствие механических повреждений.

Не допускают к дальнейшей поверке датчик, если обнаружено неудовлетворительное крепление разъемов, грубые механические повреждения наружных частей и прочие повреждения.

Результат внешнего осмотра считают положительным, если маркировка, комплектность, состояние коммуникационных и энергетических линий связи соответствуют эксплуатационным документам, отсутствуют механические повреждения.

8 Подготовка к поверке и опробование средства измерений

8.1 Подготовка к поверке

8.1.1 Средства поверки и поверяемый датчик должны быть выдержаны в помещении, где проводят поверку, не менее одного часа.

8.1.2 Подключить датчик к персональному компьютеру в соответствии с приложением А настоящей методики поверки или к мобильному устройству в соответствии с руководством по эксплуатации на датчик.

8.1.3 Поверка должна проводиться на той жидкости, на которой будет эксплуатироваться датчик, или с близкими к ней диэлектрическими параметрами.

8.1.4 Запустить программу на ПК TKLSConf или на мобильном устройстве TKLS Tool. Откроется главное окно программы.

8.1.5 Порядок действий в ПО TKLSConf для операционной системы Windows.

8.1.5.1 При первичной поверке датчика в нем будет установлен заводской пароль testtest, который необходимо заменить перед выполнением дальнейших действий с датчиком. Для этого в поле «Пароль на изменение настроек» вместо заводского пароля ввести новый пароль датчика. Пароль должен содержать ровно 8 символов - цифр от 0 до 9 и/или букв латинского алфавита (ЗАГЛАВНЫХ и строчных). В качестве пароля не может быть задан серийный номер датчика и пароль «testtest». После введения нового пароля нажать кнопку «Записать настройки». Появится окно с запросом текущего пароля на изменение настроек датчика. Ввести старый пароль «testtest» и нажать кнопку "ОК". Пароль сменится на новый.

8.1.5.2 Введенный пароль указать в дополнительных сведениях о поверке и паспорте.

8.1.5.3 Выполнить следующие настройки:

- в поле «Интервал усреднения (с)» установить значение 30;

 нажать кнопку «Записать настройки». При выполнении периодической поверки пароль датчика будет отличаться от заводского «testtest». Ввести пароль (указан в сведениях о поверке и паспорте, либо запросить у лица, представившего датчик в поверку) в поле окна «Введите пароль», которое появится после нажатия кнопки «Записать настройки»;

- опустить датчик в емкость;

- залить в емкость жидкость таким образом, чтобы датчик был погружен на всю

длину ЧЭ, выждать не менее 1 минуты;

- дождаться надписи «Уровень стабилизирован» в окне программы и нажать кнопку «<» напротив кнопки «Полный бак» для фиксации соответствующего значения;

- извлечь датчик из емкости и дать жидкости стечь в течение 10 минут;

– дождаться надписи «Уровень стабилизирован» в окне программы и нажать кнопку «<» напротив кнопки «Пустой бак» для фиксации соответствующего значения;

- в поле «Максимальный уровень» (*N_{max}*) установить максимальное значение диапазона измерений, равное 4095;

 в поле «Минимальный уровень» (N_{min}) установить минимальное значение диапазона измерений, равное 0;

- нажать кнопку «Записать настройки».

8.1.6 Порядок действий в ПО TKLS Tool для операционной системы Android или iOS.

8.1.6.1 В части экрана «Список датчиков» выбрать по серийному номеру поверяемый и нажать на него.

8.1.6.2 В следующем экране нажать «Настройки». При первичной поверке появится окно «Смените пароль», куда необходимо ввести новый пароль, взамен установленного заводского «testtest». Пароль должен содержать ровно 8 символов – цифр от 0 до 9 и букв латинского алфавита (заглавных и строчных). В качестве пароля не может быть задан серийный номер датчика и пароль «testtest». После введения нового пароля нажать кнопку «ОК». Пароль сменится на новый.

8.1.6.3 Введенный пароль указать в дополнительных сведениях о поверке и паспорте.

8.1.6.4 При выполнении периодической поверки необходимо ввести пароль (указан в сведениях о поверке и паспорте, либо запросить у лица, представившего датчик в поверку) во всплывающем окно «Введите пароль».

8.1.6.5 Выполнить следующие настройки:

- нажать «Конфигурация» затем «Интервал усреднения». В поле ввода установить значение 30;

- нажать кнопку «Назад»;

- нажать кнопку «Записать настройки»;

- опустить датчик в емкость;

- залить в емкость жидкость таким образом, чтобы датчик был погружен на всю длину ЧЭ, выждать не менее 1 минуты;

– нажать «Полный бак». Дождаться надписи «Уровень стабилизирован» и нажать кнопку «,)» рядом с полем для ввода значения. Текущее значение первичных показаний датчика должно появиться в поле;

- нажать кнопку «Назад»;

- извлечь датчик из емкости и дать жидкости стечь в течение 10 минут;

– нажать кнопку «Пустой бак». Дождаться надписи «Уровень стабилизирован» и нажать кнопку «↓» рядом с полем для ввода значения. Текущее значение первичных показаний датчика должно появиться в поле;

- нажать кнопку «Назад»;

- в разделе «Общие настройки» нажать «Макс. уровень». Далее установить максимальный уровень, равный 4095 (*N*_{max});

- нажать кнопку «Назад»;

- в разделе «Общие настройки» нажать «Мин. уровень». Далее установить минимальный уровень, равный 0 (*N_{min}*);

- нажать кнопку «Назад»;

- нажать кнопку «Записать настройки».

8.2 Опробование

Датчик погрузить в жидкость на различные уровни. В ПО TKLSConf или TKLS Tool зафиксировать изменения уровня.

Результат опробования считают положительным, если установлена связь с датчиком, показания датчика изменяются в соответствии с изменением уровня.

9 Проверка идентификации программного обеспечения средства измерений

Проверка идентификационных данных программного обеспечения (ПО) осуществляется следующим образом:

- TKLSConf – версия ПО датчика отображается в окне программы в отдельном поле под строкой «Скорость». Версия программы TKLSConf отображается в заголовке программы.

- TKLS Tool – в списке найденных в ПО датчиков выбрать необходимый, нажав на него. Сделать свайп текущего экрана влево. В появившемся окне со списком настроек версия ПО датчика отображается в самом верху. Для просмотра версии программы TKLS Tool необходимо в основном окне со списком обнаруженных датчиков нажать «Меню» -> «О программе».

Результат проверки считают положительным, если номер версии ПО соответствует данным, приведенным в описании типа.

10 Определение приведенной погрешности измерений уровня

Для определения приведенной погрешности измерений уровня нанести отметки на чувствительном элементе датчика (далее – ЧЭ) при помощи измерительной рулетки, равные (5...10), (20...30), (45...55), (70...80) и (90..95) % от диапазона измерений и погрузить датчик на эти отметки, выждать не менее 1 минуты и записать установившееся значение цифрового кода *N*, отображаемого в окне программы TKLSConf или TKLS Tool для каждой отметки. Измерения на каждой отметке провести один раз.

11 Подтверждение соответствия средства измерений метрологическим требованиям

По полученным результатам в пункте 10 рассчитать приведенную погрешность измерений уровня у, % по формуле

$$y = \frac{N - N_{\text{smax}}}{N_{\text{max}}} \cdot 100 , \qquad (1)$$

где N_{3man} – расчетное значение цифрового кода, соответствующее текущему уровню погружения датчика, определяемое по формуле:

$$N_{\text{этал}} = \frac{H_{\text{i}} \cdot N_{\text{max}}}{L},\tag{2}$$

где H_i – значение уровня жидкости, соответствующее текущему уровню погружения датчика, мм;

L – диапазон измерений, который соответствует диапазону цифрового кода от N_{min} (минимальное значение уровня) до N_{max} , мм.

Результат поверки считается положительным, если значение приведенной погрешности не превышает ±0,5 %.

12 Оформление результатов поверки

12.1 Результаты поверки заносят в протокол произвольной формы. В протоколе должны быть отражены результаты поверки по всем соответствующим пунктам настоящей методики поверки.

12.2 Сведения о результатах поверки средств измерений передаются в Федеральный информационный фонд по обеспечению единства измерений.

12.3 По заявлению владельца средства измерений или лица, представившего его на поверку, в случае положительных результатов поверки (подтверждено соответствие средства измерений метрологическим требованиям) выдается свидетельство о поверке средства измерений, оформленное в соответствии с действующими нормативно-правовыми документами. Знак поверки наносится на свидетельство о поверке. В случае отрицательных результатов поверки (не подтверждено соответствие средства измерений метрологическим требованиям) выдается извещение соответствие средства измерений метрологическим требованиям) выдается извещение о непригодности к применению средства измерений, оформленное в соответствии с действующими нормативно-правовыми документами.

Разработали:

Начальник лаборатории № 449

Ведущий инженер по метрологии лаборатории № 449

В.И. Беда

И.В. Беликов

ПРИЛОЖЕНИЕ А к РТ-МП-1011-449-2021 (обязательное)

Рисунок А.1 - Схема подключения

Для подключения датчика к ПК необходимо:

1) подключить четырехконтактный разъем преобразователя интерфейсов USB-RS232 TKLS-Prog-232 (только для датчика TKLS-L A-RS232) или USB-RS485 TKLS-Prog-485 (для всех остальных датчиков) к четырехконтактному разъему переходного кабеля (входит в комплект преобразователей интерфейсов, позиция 1)

2) подключить USB разъем преобразователя интерфейсов к ПК (позиция 2);

 подключить другой конец переходного кабеля к разъему датчика уровня топлива (позиция 3);

4) после подключения датчика к ПК система автоматически распознает подключенное устройство, если в системе заранее были установлен драйвер преобразователя интерфейсов AGUSB (TKUSBDriver), если нет, то необходимо скачать драйвер преобразователя интерфейсов AGUSB (TKUSBDriver) с сайта производителя: www.tk-nav.ru или www.tkls.ru.