УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «25» марта 2022 г. № 774

Регистрационный № 84960-22

Лист № 1 Всего листов 4

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Трансформатор напряжения ОМОН-330-500

Назначение средства измерений

Трансформатор напряжения ОМОН-330-500 (далее - трансформатор) предназначен для использования при электрических измерениях и поверке средств измерений в цепях переменного тока частотой 50 Γ ц с номинальными напряжениями 330/ $\sqrt{3}$ и 500/ $\sqrt{3}$ кВ.

Описание средства измерений

Принцип действия трансформатора основан на преобразовании посредством электромагнитной индукции одного напряжения переменного тока в другое напряжения переменного тока при неизменной частоте.

Трансформатор представляет собой трехступенчатую конструкцию. На верхней ступени трансформатора расположено экранное кольцо. Каждая ступень герметична и состоит из двух активных частей, помещенных в фарфоровую покрышку, заполненную трансформаторным маслом и формирующую внешнюю изоляцию трансформатора.

Нижняя и верхняя активные части закреплены на соответствующих фланцах ступени. Магнитопровода изготовлены из пластин холоднокатаной электротехнической стали. Конструкция обмоток трансформатора цилиндрическая, многослойная.

По назначению обмотки подразделяются на первичную, выравнивающую, связующую, вторичную основную №1 и вторичную дополнительную №2.

Высоковольтный вывод «А» первичной обмотки расположен на крышке верхней ступени трансформатора. Заземляемый вывод «Х» (а также отпайки «Х1», «Х2») первичной обмотки и выводы вторичной обмотки №2 расположены в коробке выводов на основании нижней ступени. Выводы вторичной обмотки №1 расположены в отдельной коробке выводов. Выводы связующих обмоток расположены на основании верхней ступени, крышке защитного кожуха, основании средней ступени и крышке защитного кожуха нижней ступени, и соединяются перемычками из медного провода.

Каждая ступень трансформатора снабжена компенсатором сильфонного типа, который обеспечивает компенсацию температурных изменений объема масла. Компенсатор закрыт защитным кожухом с прорезью для визуального контроля уровня масла.

Рабочее положение трансформатора в пространстве - вертикальное.

В нижней части трансформатор имеет табличку с напечатанными на ней техническими данными и заводским номером в виде цифровых обозначений, однозначно идентифицирующих данный экземпляр трансформатора.

К трансформатору данного типа относится трансформатор напряжения ОМОН-330-500 с заводским № 01.

Нанесение знака поверки на трансформатор не предусмотрено.

Общий вид средства измерений приведен на рисунке 1.

Рисунок 1 - Общий вид средства измерений

Программное обеспечение отсутствует.

Метрологические и технические характеристики

Таблица 1 - Метрологические характеристики

Tuesting T triefpessers to the August opinion	
Наименование характеристики	Значение
Номинальные значения первичного напряжения, кВ	330/√3 и 500/√3
Номинальные значения вторичного напряжения, В	
- основной	$100/\sqrt{3}$
- дополнительной	100
Класс точности основной вторичной обмотки по ГОСТ 23625-2001	0,05/0,1
Класс точности дополнительной вторичной обмотки по ГОСТ 1983-	0,5
2015	
Номинальные мощности вторичных обмоток, В А	
- основной	5/10
- дополнительной	5
Номинальная частота переменного тока, Гц	50

Таблица 2 - Основные технические характеристики

Наименование характеристики	Значение
Габаритные размеры трансформатора, мм	
- Высота	6300
- максимальный диаметр	1710
Масса трансформатора, кг	2700
Условия эксплуатации:	
- температура окружающей среды, °С	от +1 до +35
- относительная влажность при $t = +25$ °C, %	до 80
- атмосферное давление, кПа	от 84 до 106
Средний срок службы, лет, не менее	30
Средняя наработка на отказ, ч, не менее	262800

Знак утверждения типа

Знак утверждения типа нанесен на информационную табличку трансформатора и на титульный лист документа «Трансформатор напряжения ОМОН-330-500. Руководство по эксплуатации и паспорт» типографским способом.

Комплектность средства измерений

Таблица 3 - Комплектность средства измерений

Наименование	Обозначение	Количество
Трансформатор напряжения	OMOH-330-500	1 шт.
Руководство по эксплуатации и паспорт	-	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 3 документа «Трансформатор напряжения ОМОН-330-500. Руководство по эксплуатации и паспорт».

Нормативные документы, устанавливающие требования к трансформатору напряжения ОМОН-330-500

ГОСТ 23625-2001 Трансформаторы напряжения измерительные лабораторные. Общие технические условия

ГОСТ 1983-2015 Трансформаторы напряжения. Общие технические условия ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки

Государственная поверочная схема, утвержденная приказом Росстандарта от $30.12.2019 \, г$. № 3453. Государственный первичный специальный эталон и государственная поверочная схема для средств измерений коэффициента масштабного преобразования и угла фазового сдвига электрического напряжения переменного тока промышленной частоты в диапазоне от $0.1/\sqrt{3}$ до $750/\sqrt{3}$ кВ и средств измерений электрической емкости и тангенса угла потерь на напряжении переменного тока промышленной частоты в диапазоне от 1 до $500 \, \text{кB}$

Изготовитель

АО «Раменский электротехнический завод Энергия» (АО «РЭТЗ Энергия»)

ИНН 5040010981

Адрес: 140105, Московская область, г. Раменское, ул. Левашова, 21

Телефон: +7 (49646) 3-29-91 Web-сайт: ramenergy.ru E-mail: retz@ramenergy.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации $\Phi \Gamma Y\Pi$ «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

