УТВЕРЖДАЮ

Заместитель директора по инновациям оТУН «ВНИЙОФИ» Филимонов «<u>20</u>» марта

Государственная система обеспечения единства измерений

Дефектоскопы для комплексного неразрушающего контроля «АЛТЕК – Автомат»

МЕТОДИКА ПОВЕРКИ

МП 019.Д4-19

Главный метролог ФГУП «ВНИИОФИ» С.Н. Негода «<u>20</u>» марта <u>2019 г.</u>

Москва 2019

СОДЕРЖАНИЕ

1	ОБЛАСТЬ ПРИМЕНЕНИЯ	
2	ОПЕРАЦИИ ПОВЕРКИ	3
3	СРЕДСТВА ПОВЕРКИ	4
4	ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
5	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
6	УСЛОВИЯ ПОВЕРКИ	5
7	ПОДГОТОВКА К ПОВЕРКЕ	6
8	ПРОВЕДЕНИЕ ПОВЕРКИ	6
8.1	Внешний осмотр	6
8.2	Идентификация ПО	6
8.3	Опробование	7
8.4	Определение метрологических характеристик	8
9	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	15
ПРИЛ	ЮЖЕНИЕ А	16
ПРИЛ	ЮЖЕНИЕ Б	17
ПРИЛ	ЮЖЕНИЕ В	
ПРИЛ	ЮЖЕНИЕ Г	19
ПРИЛ	ЮЖЕНИЕ Д	20

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Настоящая методика поверки распространяется на дефектоскопы для комплексного неразрушающего контроля «АЛТЕК – АВТОМАТ» (далее по тексту – дефектоскопы) и устанавливает методы и средства их первичной и периодических поверок.

1.2 Дефектоскопы предназначены для измерений глубины поверхностных дефектов в режиме вихретокового контроля и расстояния по направлению распространения ультразвуковых колебаний в режиме ультразвукового контроля, при проведении контроля деталей и изделий в процессе производства, эксплуатации и ремонта в различных отраслях промышленности.

1.3 Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении первичной (в том числе после ремонта) и периодической поверки должны выполняться операции, указанные в таблице 1.

	Наименование операции	Номер пункта
N⁰		методики
п/п		поверки
1	Внешний осмотр	8.1
2	Идентификация программного обеспечения (ПО)	8.2
3	Опробование	8.3
4	Определение метрологических характеристик	8.4
-	Определение диапазона и расчет абсолютной погрешности	0.4.1
5	измерении расстояния по направлению распространения ультразвуковых колебаний	8.4.1
6	Определение диапазона и расчет абсолютной погрешности измерений отношений сигналов на входе приемника дефектоскопа при задержке 20 мкс	8.4.2
7	Определение диапазона и расчет допускаемой абсолютной погрешности измерений временных параметров	8.4.3
8	Определение диапазона и расчет абсолютной погрешности измерений глубины выявляемых поверхностных дефектов типа трещина	8.4.4

Таблица 1 – Операции первичной и периодической поверок

2.2 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

2.3 Допускается проводить частичную поверку в ограниченном диапазоне измерений расстояния по направлению распространения УЗК, а также поверку конкретных модулей в зависимости от комплекта поставки дефектоскопа.

2.4 Поверка дефектоскопа прекращается в случае получения отрицательного результата при проведении хотя бы одной из операций, а дефектоскоп признают не прошедшим поверку. При получении отрицательного результата по пунктам 8.4.1, 8.4.4 методики поверки признается непригодным к применению пьезоэлектрический преобразователь (ПЭП) и (или) вихретоковый преобразователь (ВТП), если хотя бы с одним прямым и наклонным ПЭП и (или) ВТП, из комплекта поставки дефектоскоп полностью прошел поверку.

3 СРЕДСТВА ПОВЕРКИ

3.1 Рекомендуемые средства поверки указаны в таблице 2.

3.2 Средства поверки должны быть поверены и аттестованы в установленном порядке.

3.3 Приведенные средства поверки могут быть заменены на их аналог, обеспечивающие определение метрологических характеристик дефектоскопов с требуемой точностью.

гаолица	2 – Гекомендуемые средства поверки
Номер	Наименование средства измерения или вспомогательного оборудования,
пункта	номер документа, регламентирующего технические требования к
(раздела)	средству, разряд по государственной поверочной схеме и (или)
методики	метрологические и основные технические характеристики
поверки	
8.4.1	Мера №3Р из комплекта мер ультразвуковых ККО-3 (далее мера №3Р).
	Толщина 29-0,2 мм, высота 59-0,1 мм, абсолютная погрешность
	воспроизведения $\pm 0,05$ мм, цилиндрические отверстия диаметром 6°, и
	2 ^{+0,1} мм, абсолютная погрешность воспроизведения диаметров
	цилиндрических отверстий ± 0,05 мм. Скорость продольной ультразвуковои
	волны в мере (5900 \pm 118) м/с.
	Per. № 63388-16.
8.4.1	Мера №2 из комплекта мер ультразвуковых ККО-3 (далее мера №2).
	Толщина меры 30.0,2 мм, высота 59.0,1 мм, абсолютная погрешность
	воспроизведения ± 0.05 мм, боковые цилиндрические отверстия диаметром
	6 0,3 и 2 0,2 мм, абсолютная погрешность воспроизведения диаметров
	цилиндрических отверстий ± 0,05 мм. Скорость продольной ультразвуковой
	волны в мере (5900 ± 59) м/с.
	Per. № 63388-16.
8.4.1	Мера №3 из комплекта мер ультразвуковых ККО-3 (далее мера №3).
	Толщина меры $30_{-0,2}$ мм, высота $55 \pm 0,1$ мм, абсолютная погрешность
	воспроизведения толщины и высоты ± 0,05 мм. Скорость продольной
	ультразвуковой волны в мере (5900 ± 59) м/с.
	Per. 63388-16.
8.4.2 - 8.4.3	Генератор сигналов сложной формы AFG3022 (далее генератор).
	Синусоидальный сигнал от 1 м1 ц до 25 М1 ц, пределы допускаемой
	относительной погрешности установки частоты ± 1 ррт. Диапазон
	устанавливаемых амплитуд от 10 мВ до 10 В, Пределы допускаемой
	абсолютной погрешности установки амплитуды ± (1 % от величины + 1 мВ)
	Per. № 32620-06.
8.4.2 - 8.4.3	Прибор для поверки аттенюаторов Д1-13А (далее прибор).
	Диапазон значений параметров ослабления электромагнитных колеоании
	от 0 до 110 дБ в диапазоне частот от 201 ц до 30 М1 ц. Пределы допускаемой
	абсолютной погрешности ослабления ± (от 0,004 до 0,900) дБ.
	Рег № 9257-83.
8.4.1	Комплект образцовых ультразвуковых мер толщины КМПТ/6М-1 (далее
	меры КМТ).
	Диапазон толщин мер от 1 до 300 мм. Погрешность аттестации по
	эквивалентной ультразвуковой толщине от 0,3 до 0,7 %.
	Per № 6578-78.
8.4.4	Мера СО-211.11-Fe из комплекта мер искусственных дефектов КМИД ВТ
	(далее мера CO-211.11-Fe).
	Глубины искусственных дефектов: $(2,50 \pm 0,1)$ мм; абсолютная погрешность
	воспроизведения ± 0.05 мм; (2.00 ± 0.1) мм; абсолютная погрешность

	воспроизведения $\pm 0,05$ мм; $(1,00 \pm 0,1)$ мм; абсолютная погрешность
	воспроизведения ± 0.05 мм; $(0.50^{+0.07}_{-0.05})$ мм; абсолютная погрешность
	воспроизведения $\pm 0,025$ мм; $(0,20^{+0,04},0,02)$ мм; абсолютная погрешность
	воспроизведения ± 0,01 мм.
	Per. № 59638-15
8.4.4	Мера СО-211.01-Fe из комплекта мер искусственных дефектов КМИД ВТ
	(далее мера CO-211.01-Fe).
	Глубины искусственных дефектов: (0,50 ^{+0,07} -0.05) мм; абсолютная
	погрешность воспроизведения ± 0,025 мм; (1,00 ± 0,1) мм; абсолютная
	погрешность воспроизведения $\pm 0,05$ мм; $(1,50 \pm 0,1)$ мм; абсолютная
	погрешность воспроизведения ± 0,05 мм; (2,00 ± 0,1) мм; абсолютная
	погрешность воспроизведения ± 0.05 мм; (3.00 ± 0.3) мм; абсолютная
	погрешность воспроизведения ± 0,15 мм.
	Per. № 59638-15
8.4.4	Мера СО-212.01-Fe из комплекта мер искусственных дефектов КМИД ВТ
	(далее мера CO-212.01-Fe).
	Глубины искусственных дефектов: (0,50 ^{+0,07} -0.05) мм; абсолютная
	погрешность воспроизведения ± 0.025 мм; (1.00 ± 0.1) мм; абсолютная
	погрешность воспроизведения ± 0.05 мм; (2.00 ± 0.1) мм; абсолютная
	погрешность воспроизведения ± 0.05 мм; (5.00 ± 0.5) мм; абсолютная
	погрешность воспроизведения ±0.25 мм.
	Per. № 59638-15
Вспомогатели	сные устройства
842 - 843	Устройство синхронизации ЛШЕК 468353 001 Принципиальная схема
0.1.2 0.1.3	привелена в приложении П
	приведена в приложении д

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Лица, допускаемые к проведению поверки, должны изучить устройство и принцип работы поверяемого дефектоскопа и средств поверки по эксплуатационной документации, пройти обучение на право проведения поверки по требуемому виду измерений.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При подготовке и проведении поверки должно быть обеспечено соблюдение требований безопасности работы и эксплуатации для оборудования и персонала, проводящего поверку, в соответствии с приведенными требованиями безопасности в нормативно-технической и эксплуатационной документации на дефектоскопы и на средства поверки.

5.2 При проведении поверки должны соблюдаться требования ГОСТ 12.3.019-80. «Испытания и измерения электрические. Общие требования безопасности».

5.3 Освещенность рабочего места поверителя должна соответствовать требованиям Санитарных правил и норм СанПиН 2.2.1/2.1.1.1278-03.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки должны быть выполнены следующие условия:

- температура окружающей среды (20 ± 5) °C;

- относительная влажность воздуха от 30 до 70 %;

- атмосферное давление (100 ± 4) кПа [(750 ± 30) мм рт.ст.];

6.2 Измерения на применяемой аппаратуре должны осуществляться в соответствии с руководством по эксплуатации и начинаться только после установления рабочего режима поверяемого дефектоскопа и средств поверки.

7 ПОДГОТОВКА К ПОВЕРКЕ

7.1 Если дефектоскоп и средства поверки до начала измерений находились в климатических условиях, отличающихся от указанных в п. 6.1 методики поверки, то дефектоскоп нужно выдержать при этих условиях один час и средства поверки выдержать не менее часа, или времени, указанного в эксплуатационной документации.

7.2 Перед проведением поверки, средства поверки и дефектоскоп подготовить к работе в соответствии с руководством по эксплуатации средств поверки и руководством по эксплуатации дефектоскопа.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- комплектность поверяемого дефектоскопа в соответствии с технической документацией;

 отсутствие механических повреждений электронного блока дефектоскопа и преобразователей, влияющих на работоспособность;

- целостность кабелей, соединяющих электронный блок дефектоскопа с модулями ультразвукового, вихретокового контроля и модулем автоматизации.

- четкая маркировка для всех преобразователей по системе компании-изготовителя;

Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если дефектоскоп соответствует требованиям, приведенным в пункте 8.1.1 методики поверки.

8.2 Идентификация ПО

Включить дефектоскоп согласно руководства по эксплуатации (РЭ).

Запустить ПО AutomatVT, согласно РЭ.

Нажать кнопку «О программе».

В открывшемся информационном окне прочитать идентификационное наименование и номер версии ПО.

Рисунок 1 – Диалоговое окно «Инфо» с указанием текущей версии ПО.

Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если илентификационные данные ПО дефектоскопа соответствуют значениям, приведенным в таблице 3.

Таблица 5 – идентификационные данные по деф	Zuonenne
идентификационные данные (признаки) 5начение	
Идентификационное наименование ПО	AutomatVT
Номер версии (идентификационный номер) ПО	7.37 и выше
Цифровой идентификатор ПО	-

Тобятино 3 Илентификаннонии на полицие ПО нефектоскопа

8.3 Опробование

8.3.1 Включить дефектоскоп согласно руководства по эксплуатации (РЭ).

8.3.2 Установить настроечный образец для ультразвукового контроля из комплекта поставки дефектоскопа в соответствии с РЭ.

8.3.3 Выключатель «Сеть-дефектоскоп» перевести в положение «Вкл».

8.3.4 Установить метку в соответствии РЭ.

8.3.5 Нажать кнопку «Автоматический контроль» и на запросы программы ввести параметры объекта контроля.

8.3.6 Поставить галочку в поле «Использовать при контроле ультразвук» и нажать кнопку «Далее».

Нажать кнопки «Контроль» и «Пуск», во всплывшем окне нажать кнопку «Да». 8.3.7

После завершения контроля на компьютере нажать кнопку «Разворот» и 8.3.8 установить метку в соответствии РЭ.

8.3.9 Повторить пункт 8.3.7.

8.3.10 После прохождения контроля нажать кнопку «Создать документ».

Нажать кнопку «Печать». 8.3.11

Установить настроечный образец для вихретокового контроля из комплекта 8.3.12 поставки дефектоскопа в соответствии с РЭ.

Нажать кнопку «Автоматический контроль» и на запросы программы ввести 8.3.13 параметры объекта контроля.

8.3.14 Поставить галочку в поле «Использовать при контроле вихреток» и нажать кнопку «Далее».

Нажать кнопки «Контроль» и «Пуск», во всплывшем окне нажать кнопку «Да». 8.3.15

После завершения контроля на компьютере нажать кнопку «Разворот». 8.3.16

- 8.3.17 Повторить пункт 8.3.15.
- После прохождения контроля нажать кнопку «Создать документ». 8.3.18

8.3.19 Нажать кнопку «Печать».

Дефектоскоп считается прошедшим операцию поверки с положительным 8.3.20 управления дефектоскопа органы регулировки, настройки и результатом, если функционируют согласно РЭ, отклонение измеренных координат дефектов в распечатанных протоколах, относительно указанных в паспортах на настроечные образцы не более 10 %.

8.4 Определение метрологических характеристик

8.4.1 Определение диапазона и расчет абсолютной погрешности измерений расстояния по направлению распространения ультразвуковых колебаний

8.4.1.1 Включить дефектоскоп согласно руководства по эксплуатации (РЭ).

8.4.1.2 Подключить преобразователь (ПЭП) из серии П112 из комплекта запасных частей (ЗИП) в соответствии с приложением Г.

8.4.1.3 На дефектоскопе последовательно нажать кнопки «Настройка параметров», «Настройка параметров датчика» и выбрать датчик № 31 (ручной).

8.4.1.4 Нажать кнопку "ВЫЗВАТЬ НАСТРОЙКУ".

8.4.1.5 Выбрать настройку ТУ523_1.

8.4.1.6 В окне «Частота приемо-передачи» установить частоту, соответствующую подключенному ПЭП. В окне «Скорость распространения УЗ в материале» внести значение скорости ультразвуковых колебаний (УЗК) взятое из свидетельства о поверки на меру ЗР из комплекта мер ультразвуковых ККО-3.

8.4.1.7 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра донного отражения сигнала.

8.4.1.8 Нажать кнопку «ГРАФИК» и «ПУСК».

8.4.1.9 Установить ПЭП на меру 3Р на бездефектном участке обработанную контактной жидкостью (масло индустриальное И-30А или аналог).

8.4.1.10 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.11 В окне «Задержка в ПЭПе» подобрать значение задержки в призме ПЭП таким образом, чтобы получить значение 20 мкс в окне «Временной интервал». Для просмотра значения в окне «Временной интервал» необходимо нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.12 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.13 В окне «Скорость распространения УЗ в материале» внести значение скорости УЗК взятое из свидетельства о поверки на меру 07-300-40x13 из комплекта образцовых ультразвуковых мер толщины КМТ176М-1.

8.4.1.14 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра донного отражения сигнала.

8.4.1.15 Нажать кнопку «ГРАФИК» и «ПУСК».

8.4.1.16 Установить ПЭП на торцевую поверхность меры 07-300-40х13 обработанную контактной жидкостью.

8.4.1.17 В окне «Глубина Ү» прочитать и записать в протокол (приложение А) измеренное значение расстояния по направлению распространения ультразвуковых колебаний (УЗК).

8.4.1.18 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.19 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра 10 донного переотражения сигнала.

8.4.1.20 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.21 В окне «Глубина Ү» прочитать и записать в протокол (приложение А) измеренное значение расстояния по направлению распространения ультразвуковых колебаний (УЗК).

8

8.4.1.22 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.23 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра донного отражения сигнала.

8.4.1.24 Установить ПЭП на торцевую поверхность меры 07-2-40х13 из комплекта образцовых ультразвуковых мер толщины КМТ176М-1.

8.4.1.25 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.26 В окне «Глубина Ү» прочитать и записать в протокол (приложение А) измеренное значение расстояния по направлению распространения ультразвуковых колебаний (УЗК).

8.4.1.27 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.28 Повторить пункты 8.4.1.14 – 8.4.1.27 пять раз результаты измерений расстояния по направлению распространения УЗК усреднить.

8.4.1.29 Повторить пункты 8.4.1.2 – 8.4.1.28 со всеми ПЭП серии П111 и П112 из комплекта ЗИП, установив значение частоты ПЭП в окне «Частота приема передачи» и признак «Совмещенный» или «Раздельный» в окне «Режим проверки».

8.4.1.30 Подключить преобразователь (ПЭП) из серии П121 из комплекта ЗИП в соответствии с приложением Г.

8.4.1.31 В окне «Настройка параметров», «Настройка параметров датчика» выбрать датчик № 31 (ручной).

8.4.1.32 Нажать кнопку "ВЫЗВАТЬ НАСТРОЙКУ".

8.4.1.33 Выбрать настройку ТУ523_1.

8.4.1.34 В окне «Скорость распространения УЗ в материале» внести значение скорости УЗК взятое из свидетельства о поверки на меру ЗР из комплекта мер ультразвуковых ККО-3.

8.4.1.35 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра донного отражения сигнала.

8.4.1.36 Нажать кнопку «ГРАФИК» и «ПУСК».

8.4.1.37 В случае отсутствия на ПЭП точки ввода необходимо провести следующие процедуры:

8.4.1.37.1 Установить преобразователь на поверхность меры №3 комплекта мер ультразвуковых ККО-3, обработанную контактной жидкостью.

8.4.1.37.2 Перемещая ПЭП вперед-назад и поворачивая его вокруг оси от 5 до 10 угловых градусов, добиться максимального уровня эхо-сигнала от цилиндрической поверхности меры.

8.4.1.37.3 Метка «0» на мере, перенесенная на боковую поверхность ПЭП, указывает на точку ввода ПЭП. (рисунок 2).

8.4.1.37.4 Нажать кнопки «СТОП» и «НАСТРОЙКА».

Рисунок 2 - Определение точки ввода ПЭП

8.4.1.38 Определение скорости распространения ультразвуковых колебаний в мере и времени задержки в призме ПЭП:

8.4.1.38.1 В окнах «Начало зоны приема» и «Конец зоны приема» установите значение начала и конца развертки экрана таким образом, чтобы можно было рассмотреть первый эхосигнал, возникший при отражении от донной поверхности меры №3 (рисунок 3а).

8.4.1.38.2 Установить преобразователь на поверхность меры №3, обработанную контактной жидкостью и нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.38.3 Перемещая ПЭП вперед-назад и поворачивая его вокруг оси от 5 до 10 угловых градусов, добиться максимального уровня эхо-сигнала от цилиндрической поверхности меры.

8.4.1.38.4 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.38.5 В окне «Глубина Ү» прочитать измеренное значение.

8.4.1.38.6 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.38.7 В окнах «Начало зоны приема» и «Конец зоны приема» установите значение начала и конца развертки экрана таким образом, чтобы можно было рассмотреть эхо-сигнал, возникший при трехкратном отражении от донных поверхностей меры №3 (рисунок 3б).

8.4.1.38.8 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.38.9 В окне «Глубина Ү» прочитать измеренное значение.

8.4.1.38.10 Рассчитать разницу между трехкратным и первым отражением эхо-сигнала от донных поверхностей.

$$L = L_3 - L_1 \tag{1}$$

где *L*₃ – измеренное значение расстояния при трехкратном отражении от донных поверхностей меры №3, мм;

 L_1 – измеренное значение расстояния при первом отражении от донной поверхности меры №3, мм.

 а) Формирование первого эхо-сигнала
б) Формирование второго эхо-сигнала
Рисунок 3 – Определение скорости распространения УЗК в мере и времени задержки в призме ПЭП

8.4.1.38.11 Отрегулируйте скорость распространения УЗК в мере №3 таким образом, чтобы L, мм, равнялось двух кратному расстоянию, взятому из свидетельства о поверке на меру №3.

8.4.1.38.12 Повторить пункты 8.4.1.38.1 – 8.4.1.38.6.

8.4.1.38.13 В окне «Задержка в ПЭПе» установите значение задержки в призме ПЭП таким образом, чтобы получилось корректное значение расстояния до донной поверхности, взятое из свидетельства о поверке на меру №3.

8.4.1.39 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.1.40 Установить ПЭП на меру ЗР из комплекта мер ультразвуковых ККО-3 обработанную контактной жидкостью, таким образом, чтобы получить эхо-сигнал от дефекта Д1.

8.4.1.41 В окне «Глубина Ү» прочитать и записать в протокол (приложение А) измеренное значение расстояния по направлению распространения УЗК.

8.4.1.42 Повторить пункты 8.4.1.39 – 8.4.1.41 пять раз результаты измерений расстояния по направлению распространения УЗК усреднить.

8.4.1.43 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.1.44 Повторить пункты 8.4.1.30 – 8.4.1.43 со всеми ПЭП серии П121 и П122 из комплекта ЗИП.

8.4.1.45 Рассчитать абсолютную погрешность измерений расстояния по направлению распространения УЗК

$$\Delta L = L_{\rm H3M} - L_{\rm HOM} \tag{2}$$

где L_{изм} – усредненное измеренное значение расстояния по направлению распространения УЗК, мм;

L_{ном} – значение расстояния до дефекта, взятое из свидетельства на меру, мм.

8.4.1.46 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если результаты измерений соответствуют таблице 4:

Таблица 4 – Значение результатов измерений

Диапазон измерений расстояния по направлению	от 2 до 3000*
распространения УЗК, мм	
Пределы допускаемой абсолютной погрешности	$\pm (1 + 0.01 \cdot H),$
измерений расстояния по направлению распространения	где Н - измеренное значение
УЗК, мм	расстояния по направлению
	распространения УЗК, мм
* - указан максимальный лиапазон, лиапазон зави	сит от типа полключаемого

* - указан максимальный диапазон, диапазон зависит от типа подключаемого преобразователя.

8.4.2 Определение диапазона и расчет абсолютной погрешности измерений отношений сигналов на входе приемника дефектоскопа при задержке 20 мкс

8.4.2.1 Собрать схему согласно приложения Б.

8.4.2.2 На генераторе AFG3022 (далее генераторе) установить:

- синхронизация «внешняя»;
- сигнал «пачка»;
- количество импульсов в пачке «1»;
- задержка «20 мкс»;
- частота «2,5 МГц»;
- амплитуда «10,4 дБ».

8.4.2.3 На дефектоскопе последовательно нажать кнопки «Настройка параметров», «Настройка параметров датчика» и выбрать датчик № 31 (ручной);

8.4.2.4 Нажать кнопку «ВЫЗВАТЬ НАСТРОЙКУ».

8.4.2.5 Выбрать настройку ТУ529.

8.4.2.6 Нажать кнопку «ГРАФИК» и «ПУСК».

8.4.2.7 На приборе для поверки аттенюаторов Д1-13А (далее приборе) установить затухание 20 дБ и при помощи регулировки амплитуды генератора (*N*_{ген 0}, дБ), выставить

амплитуду сигнала на экране монитора дефектоскопа, равную 100 ед. отсчета вертикальной шкалы.

8.4.2.8 Увеличить усиление дефектоскопа на 6 дБ, для чего необходимо нажать кнопки «СТОП» и «НАСТРОЙКА», и установить величину базового усиления на 6 дБ больше.

8.4.2.9 Нажать кнопки «ГРАФИК» и «ПУСК», и с помощью регулировки амплитуды генератора выставить амплитуду сигнала на экране монитора равную 100 ед. отсчета вертикальной шкалы.

8.4.2.10 Выставленное на генераторе значение амплитуды записать в протокол (приложение А) как измеренное значение усиления, *N*_{reн 0+n}, дБ.

8.4.2.11 Выполнить пункты 8.4.2.8 – 8.4.2.10 для значений усиления дефектоскопа в диапазоне от 26 до 62 дБ с шагом 6 дБ.

8.4.2.12 Вычислить абсолютную погрешность ΔN , дБ, измерения отношений амплитуд сигналов:

$$\Delta N = N_0 - (N_{\text{reh 0}} - N_{\text{reh 0}+n}) - N_{\text{deb 0}+n}$$
(3)

где N₀ – начальное значение усиления, установленное на дефектоскопе, дБ;

 $N_{\text{деф 0+n}}$ – значение усиления, установленное на дефектоскопе, дБ;

*N*_{ген 0+n} – значение амплитуды, выставленное на генераторе, дБ

n – порядковый номер установленных значений усиления дефектоскопа и ослабления генератора.

8.4.2.13 Повторить пункты 8.4.2.8 – 8.4.2.12 три раза результат измерений усреднить.

8.4.2.14 Нажать кнопку «СТОП»

8.4.2.15 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если результаты измерений соответствуют таблице 5:

Таблица 5 – Значение результатов измерений

Диапазон измерений отношения амплитуд сигналов на входе приемника дефектоскопа, при задержке 20 мкс, дБ	от 20 до 62
Абсолютная погрешность измерений отношения амплитуд сигналов на входе приемника дефектоскопа, при задержке 20 мкс, дБ	±2

8.4.3 Определение диапазона и расчет допускаемой абсолютной погрешности измерений временных параметров

8.4.3.1 Собрать схему согласно приложения Б.

8.4.3.2 На генераторе установить:

- синхронизация «внешняя»;
- сигнал «пачка»;
- количество импульсов в пачке «1»;
- задержка «0,6 мкс»;
- частота «2,5 МГц»;
- амплитуда «1 В».

8.4.3.3 Установить на приборе затухание 0 дБ;

8.4.3.4 На дефектоскопе последовательно нажать кнопки «Настройка параметров», «Настройка параметров датчика» и выбрать датчик № 31 (ручной);

8.4.3.5 Нажать кнопку «ВЫЗВАТЬ НАСТРОЙКУ».

8.4.3.6 Выбрать настройку ТУ524_1.

8.4.3.7 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.3.8 Значение в окне «Временной интервал» занести в протокол (приложение А), как измеренное значение временных интервалов.

8.4.3.9 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.3.10 В окнах «Начало зоны приема» и «Конец зоны приема» установить значение начала и конца развертки экрана необходимое для просмотра эхо-сигнала на экране монитора дефектоскопа.

8.4.3.11 Установить на генераторе задержку «100 мкс».

8.4.3.12 Нажать кнопки «ГРАФИК» и «ПУСК».

8.4.3.13 Значение в окне «Временной интервал» занести в протокол (приложение А), как измеренное значение временных интервалов.

8.4.3.14 Нажать кнопки «СТОП» и «НАСТРОЙКА».

8.4.3.15 Повторить пункты 8.4.3.9 – 8.4.3.14 установив на генераторе задержку 500 и 1000 мкс.

8.4.3.16 Рассчитать абсолютную погрешность измерений временных интервалов ΔT , мкс:

$$\Delta T = T_{\rm H3M} - T_{\rm H0M} \tag{4}$$

где *Т*_{изм} – измеренное на дефектоскопе значение временных интервалов, мкс;

*T*_{ном} – значение временных интервалов, установленное на генераторе, мкс.

8.4.3.17 Повторить пункты 8.4.3.7 – 8.4.3.16 три раза результат измерений усреднить.

8.4.3.18 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если результаты измерений соответствуют таблице 6:

Таблица 6 – Значение результатов измерений

Диапазон измерений временных интервалов, мкс	от 0,6 до 1000
Предел допускаемой абсолютной погрешности измерений	$\pm (0,3+0,01 \cdot T)$
временных интервалов, мкс, не более	где Т – измеренное
	значение временного
	интервала, мкс

8.4.4 Определение диапазона и расчет абсолютной погрешности измерений глубины выявляемых поверхностных дефектов типа трещина

8.4.4.1 Подключить вихретоковый преобразователь (ВТП) в соответствии с приложением В;

8.4.4.2 На дефектоскопе последовательно нажать кнопки «Настройка параметров» «Вихретоковый контроль» и «Поверка».

8.4.4.3 В поле «Рабочая частота, кГц» установить параметр «Глубина».

8.4.4.4 Установить в поле «Количество сканов в запуске» 500.

8.4.4.5 Установить ВТП на бездефектную часть меры СО-211.11-Fe из комплекта мер искусственных дефектов КМИД-ВТ.

8.4.4.6 Нажать кнопку «ПУСК».

8.4.4.7 Провести ВТП по модели дефекта с глубиной 0,5 мм на мере CO-211.11-Fe.

8.4.4.8 Значение в поле «Глубина ИД» занести в протокол (приложение А) как измеренное значение глубины выявляемых поверхностных дефектов типа трещина.

13

8.4.4.12 Повторить пункты 8.4.8.5 – 8.4.4.10 на мере СО-212.01-Fe из комплекта мер искусственных дефектов КМИД-ВТ.

8.4.4.13 Рассчитать абсолютную погрешность измерений глубины выявляемых поверхностных дефектов типа трещина

$$\Delta H = H_{\mu_{3M}} - H_{HOM} \tag{5}$$

где *Н*_{изм} – измеренное на дефектоскопе значение глубины поверхностных дефектов типа трещина, мм;

*H*_{ном} – значение глубины поверхностных дефектов типа трещина, указанных в свидетельстве о поверке на меру, мм.

8.4.4.14 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если результаты измерений соответствуют таблице 7:

ruomių / Snu lenne pesymitatob insitepenini	
Диапазон измерений глубины поверхностных	
дефектов типа трещина (при значении	
шероховатости не более Ra= 12,5), мм	от 0,5 до 5,0*
	τ
Нижний предел измерений глубины	
поверхностных дефектов типа трещина, мм, не	
менее:	
-при ширине раскрытия 0,25 мм	0,5
-при ширине раскрытия 0,50 мм	1,0
-при ширине раскрытия 1,00 мм	2,0
Пределы допускаемой абсолютной погрешности	
измерений глубины выявляемых поверхностных	$\pm (0.05 + 0.18 \cdot H),$
дефектов типа трещина, мм	где H – измеряемая глубина, мм
* - указан максимальный диапазон, диапазо	он зависит от типа подключаемого
преобразователя.	

Таблица 7 – Значение результатов измерений

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 Результаты поверки заносятся в протокол. Рекомендуемая форма протокола поверки – приложение А. Протокол может храниться на электронных носителях.

9.2 При положительных результатах поверки оформляют свидетельство о поверке и наносится знак поверки в соответствии с приказом Минпромторга России от 02.07.2015 г. №1815.

9.3 При отрицательных результатах поверки, дефектоскоп признается непригодным к применению и на него выдается извещение о непригодности в соответствии с приказом Минпромторга России от 02.07.2015 г. №1815 с указанием причин непригодности.

Исполнители:

Начальник отдела Д-4 ФГУП «ВНИИОФИ»

Начальник отдела Д-2 ФГУП «ВНИИОФИ»

А.В. Иванов А.В. Стрельцов

Инженер 1-ой категории отдела Д-4 ФГУП «ВНИИОФИ»

Инженер 2-ой категории отдела Д-4 ФГУП «ВНИИОФИ»

А.С. Неумолотов

П.С. Мальцев

ПРИЛОЖЕНИЕ А

(Рекомендуемое)

Форма протокола поверки

Протокол первичной/периодической поверки №

От «____» _____ 20___ года.

Средство измерений:
Заводской номер:
Дата выпуска:
Заводской номер преобразователя:
Серия и номер клейма предыдущей поверки:
Принадлежащее:
Поверено в соответствии с методикой поверки:
С применением эталонов:
Условия проведения поверки:
Температура окружающей среды°С;
относительная влажность%;
атмосферное давление кПа.

А.1 Внешний осмотр

А.2 Идентификация программного обеспечения (ПО)

А.3 Опробование

А.4 Результаты определения метрологических характеристик:

Метрологические характеристики	Номинальная величина / погрешность	Измеренное значение	Заключение

Заключение:

Средство измерений признать пригодным (или непригодным) для применения

Поверитель:

Подпись

1 ФИО

приложение б

(обязательное)

Схема подключения дефектоскопа для комплексного неразрушающего контроля «АЛТЕК – Автомат» для проверки основной абсолютной погрешности отношений амплитуд сигналов на входе приемника дефектоскопа

ПРИЛОЖЕНИЕ В

(обязательное)

Схема подключения дефектоскопа для комплексного неразрушающего контроля «АЛТЕК – Автомат» для проверки глубины выявляемого поверхностного дефекта типа «трещина»

ПРИЛОЖЕНИЕ Г

(обязательное)

Схема подключения дефектоскопа для комплексного неразрушающего контроля «АЛТЕК – Автомат» для проверки предела допускаемой абсолютной погрешности измерения глубины У расположения дефекта и диапазона измерений расстояния по направлению распространения

приложение д

(обязательное)

Устройство синхронизации ДШЕК.468353.001

48 monaoq	1	νοφοσιούχ	(IR76R)	002/9/	/ 7///	
		дошнажале чнакада) рабосности ст	LAUL SU	90010	даная н	
2 1 1	1	ברוואגטטארופטרורור ארוואהחרנווהה	SLDŽ VD	gon mel	7 gody	
וש אחבש אחבשסק	V	0,000-1,0000-1/1	10700 100000 10000	קוינכסק א. מסארושי	/ goden _o wani/wei	
EEU L	00'	ESE89†X3M0				
	T			1		
	1					
	1					
	1	FL 40004249.X9FV	LY AH EU	11.5-13-t	245	1 10
	1	KI #00'0412+9'X96V	LY SH TU	UL5-41-2	145	1 10
						H
		(S) амннопћошћимо.	מסקבשקים א	WJG		A. 10
						000
	1	FL EGOL97DXO %OLF	WO 07-57 0W	D-HEE-ZJ	ELS	
	5	<u>FL EGOZ970X0 %017 P</u>	10 001-52 0)-HEE-ZJ	ILA DIA	100
	1	HI EGUL97UXU %UL+	WUX L-SCL	1-488-61	68	0 10
	4	h1 E6UL97UXU %UL+ h	UUUUU-SCL	17HEE-6J	88	
in an internet in the second second	17	h1 8602970X0 %00+ ~	UALC-560	J-HEE-CJ	Ld CV/4V	\square
ลงกกต่อนก็รลด กต่ะ	6	TI EDULYTUMU 7604**	NU 667361	THEE TO J	5ă 1ă	ș.
טמרי בשמידעו ובעונגע ורחחחחחווורא	1	בו כבחיו מאיחשה שרחו דע	n 77-c71	1-1100-27	Cν	8
ахоодлићгад пди	1	THE COULDIONO 7804			20	ŀΤ
ะ เราแลอdnopou - 92	F	61 EGOY.940X0 %0LF 4	1.7-571	1-488-27	98'78'โ8	
	-		0 27 200	1100 02		
		ובעוסספי (צ)	nsad			- uput
		87 		2		
	1	<u>ΓΙ ΖΙΙΌ9ΤΟΧΟ %5</u> ∓Φυ	077-27W	-QLI-OLX	77	
	1	UT OD EEDETD URAG %OT +C	<i>⊅⊔ 008[-80</i>]	7-6E-ELX	Ð	
	1	<u>FT 0016967971889 %0170</u>	DU 0088-90	7-6E-ELX	<u> </u>	
	1	<u>ΗΙ ζΖΙ ΟΥΤΟΧΟ %ΟΙ+ΦΟ</u>	ULS-UUSIW	-VII-UIX	IJ	AME N
		עררונות <i>דום</i> ור	ลกมกง			(468
		ואבטשטשה (_)	UPPUX			361.0
a supervision for					апнан	205
anhokawind[]	υoy	апнаданан	ПОН		-онгодо	

F	Инв. № подл.	Падп. и дата	<u> B</u> ∃ฉพ. บнв. № Инв. № дибл.	Naðn. u ðama			
Contraction of the second	Han Jurm				X1X4,X6 X2,X3,X5	VDI	иозна- обозна- чение
л оснал, тоал, шите Канфовал	Ит доним Пада Пата ПШЕК.4 68353.				Контокты (X) Розетка СР-50-731В ВР0.364.008 ТУ Розетка ЕRA.00250.СТL	Приборы электроважцумные и полиграводниковые (V) Дилод КД5228	HOUMEHOUGHUE
	001				33	1	Kon
Popriam A4	W EEU				p. LEMO		Применание