ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Гониометры ДГ-Ц (модели ДГ-03Ц и ДГ-1Ц)

Назначение средства измерений

Гониометры ДГ-Ц (модели ДГ-03Ц и ДГ-1Ц) (далее – гониометр) предназначены для высокоточных измерений углов между плоскими полированными гранями твердых прозрачных и непрозрачных тел в автоматическом режиме.

Описание средства измерений

Принцип работы гониометра основан на измерении смещения световой марки, отраженной от измеряемой поверхности, по светочувствительному элементу автоколлиматора.

При повороте объекта измерений, установленного на юстируемом столике, механически связанного с фотоэлектрическим преобразователем угловых перемещений (ФПУ), вокруг вертикальной оси в моменты совпадения нормалей к отражающим поверхностям объекта измерений с автоколлимационной маркой цифрового автоколлиматора (АК) на выходе последнего формируются информационные сигналы, по которым выполняются вычисления величины угла поворота объекта измерений относительно референтной метки ФПУ. Информационные сигналы АК и ФПУ передаются в электронный блок, где выполняется их преобразование в данные, пригодные для обработки и отображения на персональном компьютере (ПЭВМ).

Конструктивно гониометр представляет собой программно-аппаратный комплекс, состоящий из оптико-механического и электронного блоков, управление которыми осуществляется с помощью специализированного программного обеспечения, установленного на ПЭВМ.

Оптико-механический блок (ОМБ) представляет собой массивный алюминиевый корпус, в верхней части которого установлены юстируемый столик для установки объекта измерений и АК на регулируемой по высоте стойке. Юстируемый столик закреплен на поворотном валу, установленном вертикально в основании корпуса гониометра. Также на поворотном валу закреплен ротор ФПУ. Статор ФПУ жестко закреплен в корпусе гониометра. Вращение вала производится с помощью специального электродвигателя постоянного тока.

ФПУ является одним из основных элементов гониометра. Принцип работы ФПУ основан на регистрации относительной величины прошедшего через растровое сопряжение потока оптического излучения как координатно-периодической функции взаимного углового положения регулярного растра шкалы и растров окон анализатора. Преобразователь имеет два кинематически связанных функциональных звена: радиальную растровую шкалу (лимб), жестко связанную с валом преобразователя, и растровый анализатор неподвижного считывающего узла. Лимб содержит две концентрические информационные дорожки: регулярного растра и референтной метки. Растровый анализатор содержит окна инкрементного считывания и референтную метку. Референтная метка растрового анализатора позиционно согласована с дорожкой референтных меток лимба. Считывающий узел решает задачу реализации растровых и кодовых сопряжений, информативно соответствующих величине углового перемещения, и задачу считывания, обработки и анализа текущих значений оптически информативных параметров указанных сопряжений.

Вторым из основных элементов гониометра является двухкоординатный цифровой автоколлиматор (АК), состоящий из автоколлимационной трубы (включающей в себя объектив, установленный в фокальной плоскости), светочувствительного элемента (КМОП-матрицы) и светодиодного источника излучения (осветитель с маркой).

КМОП-матрица используется для формирования измерительного сигнала и, в то же время, является измерительной шкалой, служащей для определения координат световой марки. Применение в автоколлиматоре КМОП-матриц нового поколения — с микролинзами и усили-

телями сигнала в каждом фоточувствительном элементе, позволяет повысить их чувствительность при расширении динамического диапазона.

Электронный блок (ЭБ) является устройством управления основными элементами ОМБ и выполняет функции интерфейса между ОМБ и ПЭВМ. С помощью интерфейсной платы ФПУ осуществляется преобразование сигналов датчика угла поворота в выходные коды и передача их в ПЭВМ. С помощью платы обработки изображения АК производится обработка и передача в ПЭВМ фото- и видеоизображений автоколлимационной марки. С помощью контроллера электродвигателя выполняется управление поворотом юстируемого столика. Кроме того, ЭБ является источником электропитания всех основных узлов ОМБ — ФПУ, АК и электродвигателя.

ПЭВМ, с установленным программным обеспечением (ПО), является центром управления гониометром. ПО позволяет в автоматическом режиме выполнять управление вращением (поворотом) юстируемого столика, обработку и отображение фото- и видеоизображений АК, а также обеспечивает сбор, хранение и отображение результатов измерений. Обмен информацией между ПЭВМ и ЭБ осуществляется по USB-интерфейсу.

Гониометры модели ДГ-03Ц от модели ДГ-1Ц отличает установка КМОП-матрицы с большей светочувствительностью, что позволяет повысить точность измерений.

Общий вид гониометра представлен на рисунке 1.

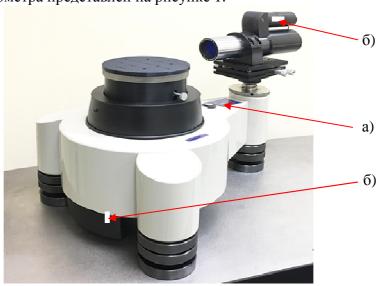


Рисунок 1 – Общий вид гониометра

место нанесения знака утверждения типа (а), места пломбировки (б)

Программное обеспечение

Программное обеспечение предназначено для управления механизмами и устройствами гониометра, обработки и отображения фото- и видеоизображений автоколлимационной марки, а также сбора, хранения, отображения и печати результатов измерений.

Уровень защиты программного обеспечения по P 50.2.077-2014 — средний.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Гониометр
Номер версии (идентификационный номер) ПО	3.2
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	5574b99acd38fb70b0440b6c6c90cf1d
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

' 1 1		
Наименование характеристики	Значение	
	ДГ-03Ц	ДГ-1Ц
Диапазон измерений углов в горизонтальной плоскости,°	от 0 д	(o 360
Пределы допускаемой абсолютной погрешности измерений углов в горизонтальной плоскости,"	±0,3	±0,8

Таблица 3 – Основные технические характеристики

Условия эксплуатации по гр. УХЛ4.1 ГОСТ 15150-69, со следующими уточнениями: — температура окружающего воздуха, °С — верхнее значение относительной влажности при 20 °С без конденсации влаги, %	
 температура окружающего воздуха, °C верхнее значение относительной влажности при 20 °C без конденсации влаги, % атмосферное давление, кПа Габаритные размеры, мм, не более: оптико-механический блок (ОМБ): 	начение
— верхнее значение относительной влажности при 20 °C без конденсации влаги, % — атмосферное давление, кПа от Габаритные размеры, мм, не более: — оптико-механический блок (ОМБ):	
- атмосферное давление, кПа от Габаритные размеры, мм, не более: - оптико-механический блок (ОМБ):	+18 до +22
Габаритные размеры, мм, не более: – оптико-механический блок (ОМБ):	60
– оптико-механический блок (ОМБ):	85 до 105
– ппина	
All III a	630
– ширина	380
– высота	370
– электронный блок (ЭБ):	
– длина	300
– ширина	250
— высота	100
Масса, кг, не более:	
– оптико-механический блок (ОМБ)	47
– электронный блок (ЭБ)	3
Параметры электрического питания:	
1 ,	187 до 242
– частота, Гц	50±1
 потребляемая мощность, Вт, не более 	100
Средняя наработка на отказ, ч, не менее	5000
Средний срок службы, лет, не менее	5

Знак утверждения типа

наносится на маркировочную табличку фотохимическим методом для последующего крепления на верхнюю часть оптико-механического блока, на переднюю панель электронного блока и типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Таблица 4 – Комплектность

Наименование	Обозначение	Кол.
Оптико-механический блок (ОМБ)	ДИАГ.408130.005	1 шт.
Электронный блок (ЭБ)	ДИАГ.469651.005	1 шт.
Персональный компьютер (ПЭВМ) 1) 2)	_	1 шт.
Соединительный кабель «ОМБ — ЭБ»	_	3 шт.
Соединительный кабель «ЭБ — ПЭВМ»	_	3 шт.
Комплект программного обеспечения 3)	_	1 к-т
Паспорт	ДИАГ.401235.005 ПС	1 экз.

Руководство по эксплуатации	ДИАГ.401235.005 РЭ	1 экз.
Методика поверки	ДИАГ.401235.005 МП	1 экз.

Примечания:

- 1) Минимальные требования: ЦПУ Pentium 4 / O3У 4 Γ Б / НЖМД 250 Γ Б / 1 USB 3.0;
- 2) Определяется договором поставки по согласованию с заказчиком, может не входить в комплект;
- 3) На внешнем носителе.

Поверка

осуществляется по документу ДИАГ.401235.005 МП «Гониометры ДГ-Ц (модели ДГ-03Ц и ДГ-1Ц). Методика поверки», утвержденному ФГУП «СНИИМ» 18 декабря 2018 г.

Основные средства поверки:

- вторичный эталон (многогранная призма, не менее 12 граней) единицы плоского угла в диапазоне значений от 0 до 360° по Государственной поверочной схеме для средств измерений плоского угла, утвержденной Приказом Росстандарта № 22 от 19.01.2016 г.;
- рабочий эталон (многогранная призма, не менее 12 граней) единицы плоского угла 1-го разряда в диапазоне значений от 0 до 360° по Государственной поверочной схеме для средств измерений плоского угла, утвержденной Приказом Росстандарта № 22 от 19.01.2016 г. (только для модели ДГ-1Ц).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные и технические документы, устанавливающие требования к гониометрам ДГ-Ц (модели ДГ-03Ц и ДГ-1Ц)

Государственная поверочная схема для средств измерений плоского угла, утвержденная Приказом Росстандарта № 22 от 19.01.2016 г.

ДИАГ.401235.005 ТУ «Гониометры ДГ-Ц (модели ДГ-03Ц и ДГ-1Ц). Технические условия»

Изготовитель

Общество с ограниченной ответственностью «Научно-производственный комплекс «Диагностика» (ООО «НПК «Диагностика»)

ИНН: 7814381252

Адрес: 197342, г. Санкт-Петербург, наб. Черной речки, 41, лит. Ф, пом. 1Н

Телефон/факс: +7 (812) 702 5061 / +7 (812) 702 5064

Web-сайт: diagnostika-spb.ru E-mail: <u>info@diagnostika-spb.ru</u>

С.С. Голубев

«____» _____2019 г.

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4 Телефон/факс: +7 (383) 210-08-14 / +7 (383) 210-13-60

Web-сайт: sniim.ru E-mail: director@sniim.ru

Аттестат аккредитации Φ ГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

М.п.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	