Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

УТВЕРЖДАЮ

И.о. директора ФГУП «ВНИИМ «ВНИИМ » «Вначений» «Вниим » «Вниим » «Вначений» «Вниим » «Вниим

Государственная система обеспечения единства измерений

АКСЕЛЕРОМЕТРЫ ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МОДЕЛЕЙ 8080A050, 8002K, 8076K

Методика поверки

МП 2520-089-2019

И.о. руководителя лаборатории госэталонов в области измерений вибраций, удара и переменных давлений

ФГУП «ВИИИМ им. Д.И. Менделеева»

Козляковский А. А.

2019 г.

г. Санкт-Петербург 2019 г. Настоящая методика поверки (далее МП) распространяется на акселерометры пьезоэлектрические моделей 8080A050, 8002K, 8076K (далее – акселерометры), фирмы Kistler Holding AG, Швейцария и устанавливает методику их первичной и периодической поверок.

Первичная поверка проводится:

- при вводе в эксплуатацию;
- после ремонта.

Интервал между поверками – 1 год.

1 Операции поверки

1.1 При проведении поверки выполняются операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта методики	Проведение операции при		
	поверки	первичной поверке	периодической поверке	
Внешний осмотр	7.1	да	да	
Опробование	7.2	да	да	
Определение частоты	7.3	да	нет	
установочного резонанса				
Определение действительного	7.4	да	да	
значения коэффициента				
преобразования.				
Определение отклонения				
действительного значения				
коэффициента преобразования от				
номинального				
Определение неравномерности АЧХ	7.5	да	да	
Определение нелинейности	7.6	да	нет	
амплитудной характеристики				
Определение относительного	7.7	да	нет	
коэффициента поперечного				
преобразования				
Определение нестабильности	7.8	нет	да	
коэффициента преобразования				

2 Средства поверки

2.1 Перечень средств поверки представлен в таблице 2

Таблица 2 - Средства поверки

Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки	Обозначение нормативного документа, регламентирующего технические требования и (или) метрологические и основные технические характеристики средства поверки
7.3	- система для измерения установочных резонансов вибропреобразователей	Регистрационный № 30797-05
7.4, 7.5, 7.6, 7.7	- вторичный эталон	по приказу Росстандарта от 27.12.18 г. № 2772 «Об утверждении государственной поверочной схемы для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения»
	- термогигрометр электронный CENTER 315	Регистрационный № 22129-09

- 2.2 Средства измерений, применяемые при поверке должны быть поверены и иметь действующие свидетельства о поверке.
- 2.3 Допускается применение других средств измерений и вспомогательного оборудования, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

3 Требования к квалификации поверителей

Поверка акселерометров осуществляется лицами, прошедшими специальную подготовку, аттестованными в качестве поверителей и изучившими нормативные документы (далее НД) на поверяемые средства измерений и средства поверки.

4 Требования безопасности

При проведении поверки должны быть соблюдены следующие требования безопасности:

- средства измерений, а также вспомогательное оборудование должны иметь защитное заземление;
- сопротивление заземления должно быть не более 4 Ом. Не допускается использовать в качестве заземления корпус (коробку) силовых электрических и осветительных щитов и арматуру центрального отопления;
- персонал, осуществляющий поверку, должен иметь удостоверение на право работы с установками, имеющими напряжение до 1000 В.

5 Условия проведения поверки

6 Подготовка к поверке

Подготовка средств измерений к поверке должна производиться в соответствии с требованиями эксплуатационной документации на них.

При проведении поверки необходимо соблюдать требования раздела «Указания мер безопасности» руководства по эксплуатации и других нормативных документов на акселерометры и средства измерений, применяемые при поверке.

Все операции поверки должны проводиться не менее чем двумя лицами, имеющими квалификационную группу по технике безопасности не ниже 3.

Все подключения и отключения к акселерометрам можно производить только при отключенном напряжении питания.

Поверку в целях утверждения типа может проводить специалист, имеющий высшее профессиональное образование

7 Проведение поверки

7.1 Внешний осмотр

- 7.1.1 Проверка внешнего вида и маркировки акселерометров проводится путем сравнения с технической документацией, представленной заявителем.
- 7.1.2 Результат проверки считается положительным, если конструкция и маркировка акселерометров соответствует требованиям технической документации на акселерометры.

7.2 Опробование

- 7.2.1 При проведении опробования проверяют работоспособность акселерометра, поверяемый акселерометр закрепляют на измерительном столе (далее вибростол) поверочной виброустановки (далее виброустановка) вторичного эталона, в соответствии с технической документацией на акселерометр. Выход акселерометра подключают соединительным кабелем к входу согласующего усилителя, выход которого соединяют с входом вольтметра, входящий в состав виброустановки вторичного эталона.
 - 7.2.2 Включают и прогревают приборы виброустановки вторичного эталона.
 - 7.2.3 С помощью вольтметра фиксируют уровень помех на выходе согласующего усилителя.
- 7.2.4 Подают напряжение от генератора через усилитель мощности на вибровозбудитель, входящий в состав виброустановки вторичного эталона. Частота подаваемого напряжения не должна превышать 0,25 максимального значения рабочего диапазона частот поверяемого акселерометра.
- 7.2.5 Плавно увеличивают напряжение до тех пор, пока сигнал на выходе акселерометра не превысит уровень помех на 40 дБ.
- 7.2.6 Результаты поверки считаются удовлетворительными, если выполняются требования п. 7.2.5 настоящей методики поверки.

7.3 Определение частоты установочного резонанса

- 7.3.1 Частоту установочного резонанса акселерометра определяют на системе для измерения установочных резонансов вибропреобразователей (далее система).
 - 7.3.2 Включают систему в соответствии с руководством по эксплуатации на систему.
- 7.3.3 Запускают программу «СИУР» двойным щелчком левой кнопки мыши по исполняемому файлу «ARM udarka.exe».
- 7.3.4 Выбирают соответствующую сферу и стальной шарик из наборов в комплекте, руководствуясь требованиям, приведенных в РЭ на систему, и поверяемым акселерометром.
- 7.3.5 Устанавливают акселерометр на рабочее тело способом, применяемым при эксплуатации. Между акселерометром и сферой наносят тонким слоем чистое машинное масло, чтобы компенсировать шероховатости контактных поверхностей.

- 7.3.6 Устанавливают акселерометр с рабочим телом в приспособление 959.48.94, так чтобы жесткость кронштейна не оказывала влияния на акселерометр, т.е. через виброгасящую прокладку без соприкосновений с деталями кронштейна.
- 7.3.7 Соединяют акселерометр с входом согласующего усилителя, используя антивибрационный кабель.
- 7.3.8 В программе «СИУР» на панели инструментов нажимают кнопку «Опции», появляется диалоговое окно «Настройки СИУР ВИП», представленное на рис. 1. В данном окне вводят тип и серийный номер акселерометра.

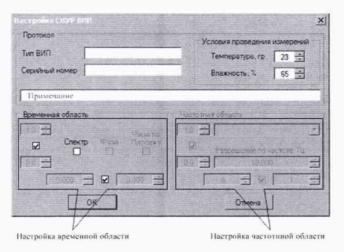


Рисунок 1 – Диалоговое окно «Настройки СИУР ВИП»

7.3.9 На панели инструментов нажимают кнопку «Старт», которая запускает 30-ти секундный таймер, во время работы которого, плата будет ожидать выполнение условий синхронизации для начала сбора данных (см. рис. 2).

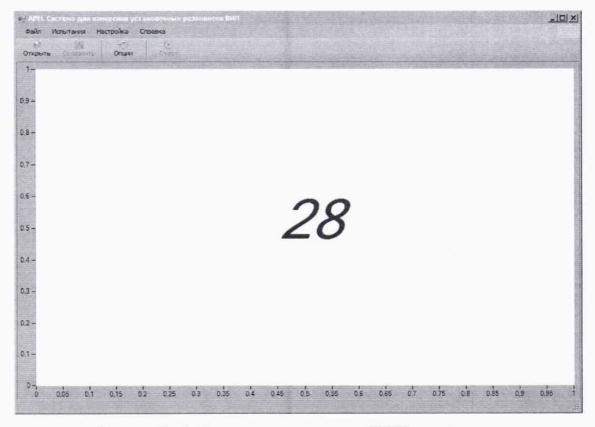


Рисунок 2 – Рабочее окно программы «СИУР» с таймером

До истечения времени работы таймера необходимо произвести ударное воздействие на акселерометр. При успешном выполнении сбора данных на экран будет выведен временной и частотный отклик акселерометра.

- 7.3.10 Операции по п. 7.3.9 повторяют не менее 3 раз.
- 7.3.11 Полученные значения резонансных частот не должны различаться одно от другого в каждом случае более чем на 5%.
- 7.3.12~3a значение частоты установочного резонанса принимают среднее арифметическое значение, определенное по результатам, полученным в процессе измерений по п.п. 7.3.9 7.3.10.
- 7.3.13 Результаты поверки считают удовлетворительными, если частота установочного резонанса не меньше значения для конкретной модели акселерометра, указанного в таблице 3.

Таблица 3 – Резонансная частота акселерометра

Модель акселерометра	Значение, кГц, не менее
8080A050	20
8002K	40
8076К	33

7.4 Определение действительного значения коэффициента преобразования. Определение отклонения действительного значения коэффициента преобразования от номинального

- 7.4.1 Действительное значение коэффициента преобразования акселерометра определяют на виброустановке вторичного эталона в соответствии с руководством по эксплуатации на виброустановку.
- 7.4.2 Акселерометр закрепляют на измерительном столе виброустановки вторичного эталона в соответствии с технической документацией на акселерометр. Выход акселерометра подключают соединительным кабелем к входу согласующего усилителя, выход которого соединяют с входом вольтметра.
- 7.4.3 Воспроизводят на виброустановке вторичного эталона вибрацию с опорной частотой $160~\Gamma$ ц и виброускорением с амплитудой $(10-100)~\text{m/c}^2$ не менее 3 значений, считывают показания вольтметра.
- 7.4.4 Рассчитывают действительное значение коэффициента преобразования $K_{\rm Д}$, мВ/мс² по формуле (1):

$$K_{\Lambda} = \frac{u_{cy}}{a_{\Lambda}},\tag{1}$$

где U_{cy} – показание вольтметра, подключенного к входу согласующего усилителя, мB; ад – виброускорение, задаваемое виброустановкой вторичного эталона, м/c².

Среднее арифметическое значение коэффициента преобразования $K_{\text{Дср}}$, мВ/мс² рассчитывают по формуле (2):

$$K_{\text{IJcp}} = \frac{\sum_{i=1}^{n} K_{\text{I}i}}{n},\tag{2}$$

где n – число измерений, $n \ge 3$.

7.4.5 Рассчитывают отклонение действительного значения коэффициента преобразования акселерометра от номинального значения, указанного в технической документации на акселерометр по формуле (3), %:

$$\delta K_{\text{A}} = \frac{K_{\text{A}} - K_{\text{H}}}{K_{\text{H}}} \cdot 100, \tag{3}$$

где K_H – номинальное значение коэффициента преобразования акселерометра, м $B/м/c^2$;

 $K_{\rm II}$ – измеренное значение коэффициента преобразования акселерометра, мВ/м/с².

7.4.6 Результаты поверки считают удовлетворительными, если отклонение действительного значения коэффициента преобразования акселерометра от номинального значения не превышает значения, указанного в таблице 4.

Таблица 4 – Отклонение коэффициента преобразования от номинального значения

Модель акселерометра	Значение, %, не более
8080A050	±5
8002K; 8076K	±10

7.5 Определение неравномерности АЧХ

- 7.5.1 Неравномерность амплитудно-частотной характеристики акселерометра определяют на виброустановке вторичного эталона в соответствии с руководством по эксплуатации на виброустановку.
- 7.5.2 Акселерометр закрепляют на измерительном столе виброустановки вторичного эталона в соответствии с технической документацией на акселерометр. Выход акселерометра подключают соединительным кабелем к входу согласующего усилителя, выход которого соединяют с входом вольтметра.
- 7.5.3 Воспроизвести на виброустановке вторичного эталона виброускорение с амплитудой (10-100) м/с² последовательно на частотах рабочего диапазона акселерометра, включая крайние частоты и число фиксированных частот не менее 10, и фиксируют на вольтметре значение напряжения с акселерометра. Для каждого значения частоты рассчитывают значение коэффициента преобразования по формуле (1). Используя полученные значения коэффициентов преобразования, вычисляют их отклонения (см. п. 7.3) по формуле (4), %:

$$\delta = \frac{\kappa_{\Lambda i} - \kappa_{\Lambda}}{\kappa_{\Lambda}} \cdot 100, \tag{4}$$

где $K_{\rm Д}$ – измеренное значение коэффициента преобразования акселерометра на опорной частоте 160 Γ ц, м ${\rm B/m/c^2}$;

 $K_{\mbox{Дi}}$ — измеренное значение коэффициента преобразования акселерометра в і-той точке диапазона частот, м $B/m/c^2$.

7.5.4 Наибольшее из отклонений δ принимают за неравномерность амплитудночастотной характеристики:

$$\delta = |\delta_i|_{\text{max}}$$
.

7.5.5 Результаты поверки считают удовлетворительными, если неравномерность амплитудно-частотной характеристики не превышает значений, указанных в таблице 5.

Таблица 5 – Неравномерность амплитудно-частотной характеристики акселерометров

Наименование характеристики	Значение		
	8080A050	8002K	8076К
Диапазон рабочих частот с неравномерностью			
АЧХ в пределах ±1 %, Гц	от 1,0 до 5000	от 2,0 до 3150	от 0,5 до 3150
Диапазон рабочих частот с неравномерностью		от 1,0 до 2,0	
АЧХ в пределах ±2 %, Гц		св. 3150	
	-	до 5000	_
Диапазон рабочих частот с неравномерностью			св. 3150
АЧХ в пределах ±4 %, Гц	-	-	до 5000
Диапазон рабочих частот с неравномерностью	от 0,5 до1,0	от 0,5 до 1,0	
АЧХ в пределах ±5 %, Гц	св. 5000	св. 5000	
	до 10000	до 8000	-
Диапазон рабочих частот с неравномерностью	от 0,3 до 0,5		от 0,2 до 0,5
АЧХ в пределах ±10 %, Гц	св. 10000	св. 8000	св. 5000
	до 15000	до 10000	до 10000
Диапазон рабочих частот с неравномерностью	от 0,1 до 0,3		от 0,1 до 0,2
АЧХ в пределах ±3 дБ, Гц	св. 15000	св. 10000	св. 10000
	до 20000	до 20000	до 15000

7.6 Определение нелинейности амплитудной характеристики

- 7.6.1 Нелинейность амплитудной характеристики акселерометра определяют на виброустановке вторичного эталона в соответствии с руководством по эксплуатации на виброустановку.
- 7.6.2 Акселерометр закрепляют на измерительном столе виброустановки вторичного эталона в соответствии с технической документацией на акселерометр. Выход акселерометра подключают соединительным кабелем к входу согласующего усилителя, выход которого соединяют с входом вольтметра.
- 7.6.3 Нелинейность амплитудной характеристики определяют не менее чем при пяти значениях виброускорения, одно из которых должно быть минимальным, другое максимальным.
 - 7.6.4 Последовательно задают виброускорение на выбранной частоте.
- 7.6.5 Считывают значение напряжения с выходов согласующих усилителей встроенного виброметра виброустановки вторичного эталона и поверяемого акселерометра.
- 7.6.6 За нелинейность амплитудной характеристики акселерометра принимают максимальное значение, рассчитанное по формуле (5), %:

$$\Delta \delta_{\rm a} = \frac{\kappa_{\rm A_{\it max}} - \kappa_{\rm A_{\it min}}}{2\kappa_{\rm A_{\it min}}} \cdot 100, \tag{5}$$

где $K_{\text{Дmax}}$ — максимальное значение коэффициента преобразования поверяемого акселерометра, м $B/m/c^2$;

 $Kд_{min}$ — минимальное значение коэффициента преобразования поверяемого акселерометра, $mB/m/c^2$.

7.6.7 Результаты проверки считают удовлетворительными, если максимальное значение нелинейности амплитудной характеристики не превышает значения $\pm 1\%$.

7.7 Определение относительного коэффициента поперечного преобразования

- 7.7.1 Относительный коэффициент поперечного преобразования акселерометра определяют на фиксированной частоте от 10 до 200 Гц.
- 7.7.2 Акселерометр устанавливают на вибростол виброустановки вторичного эталона с помощью специального устройства таким образом, чтобы главная ось его чувствительности была перпендикулярна к направлению колебаний. Выход акселерометра подключают соединительным кабелем к входу согласующего усилителя, выход которого соединяют с входом вольтметра, входящий в состав виброустановки втричного эталона. Специальное устройство должно обеспечивать поворот акселерометра вокруг его оси чувствительности на 360° с интервалом не более 30°.
- 7.7.3 Вибростолу задают виброускорение от 20 до 50 м/с² на частоте от 10 до 200 Гц. Значение виброускорения для акселерометра не должно превышать предельно допустимых значений в поперечном направлении. Значение виброускорения выбирают таким образом, чтобы при направлении вибрации вибростола, совпадающем с направлением максимума коэффициента поперечной чувствительности акселерометра, отношение значения, измеренного на выходе согласующего усилителя напряжения к значению шума, на его выходе было не менее 14 дБ (≈ 5 раз).
- 7.7.4 Считывают показания вольтметра для каждого положения акселерометра, соответствующего повороту вокруг оси чувствительности на 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 330°. Повторяют процедуру еще раз и считывают показания вольтметра. Вычисляют среднее арифметическое значение показаний вольтметра U_{i ср}, мВ, по формуле (6):

$$U_{icp} = 0.5 \left(U_i' + U_i^n \right), \tag{6}$$

где U_i - показания вольтметра для каждого положения акселерометра, мВ.

7.7.5 Относительный коэффициент поперечного преобразования для каждого положения акселерометра вычисляют по формуле (7), %:

$$K_{O\Pi i} = \frac{U_{icp}}{a_{\Lambda} K_{\Lambda}} \cdot 100 , \qquad (7)$$

где $K_{\text{Д}}$ — действительное значение коэффициента преобразования акселерометра, определенное по формуле (1), мВ/м/с².

7.7.6 В качестве относительного коэффициента поперечного преобразования принимают максимальное значение, %, вычисленное по формуле (7)

$$K_{O\Pi} = (K_{O\Pi i})_{max}$$
.

7.7.7 Результаты поверки считаются удовлетворительными, если максимальное значение коэффициента поперечного преобразования акселерометра не превышает значения, указанного в таблице 6.

Таблица 6 – относительный коэффициент поперечного преобразования акселерометров

Модель акселерометра	Предельное значение, %
8080A050	3,0
8002K; 8076K	2,0

7.8 Определение нестабильности коэффициента преобразования

7.8.1 Нестабильность коэффициента преобразования определяют на основании полученного коэффициента преобразования при предыдущей поверке и вычисляют по формуле (8), %:

$$\Delta_{\rm OH} = \frac{\rm K \pi - K' \pi}{\rm K' \pi} \cdot 100$$

где Кд - действительное значение коэффициента преобразования акселерометра при текущей поверке, м $\mathrm{B/m/c^2}$;

- K'д действительное значение коэффициента преобразования акселерометра при предыдущей поверке, м $B/m/c^2$.
- 7.8.2 Результат поверки считается удовлетворительным, если нестабильность коэффициента преобразования поверяемого акселерометра не превышает значения, указанного в таблице 7.

Таблица 7 – нестабильность коэффициента преобразования акселерометров

Модель акселерометра	Значение, %, не более
8080A050	0,1
8002K; 8076K	0,5

8 Оформление результатов поверки

- 8.1 Результаты поверки считаются положительными, если характеристики акселерометра удовлетворяют всем требованиям данной методики. В этом случае на акселерометр выдается свидетельство о поверке в установленном порядке.
- 8.2. Знак поверки наносится на свидетельство о поверке и/или в руководство по эксплуатации.
- 8.3. При отрицательных результатах акселерометр к применению не допускается и на него выдается извещение о непригодности с указанием причин.