ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ (ФГУП «ВНИИМС»)

Государственная система обеспечения единства измерений

РОТАМЕТРЫ СЕРИИ ТМ, ТМЅ, ТМО, ТМG, ТМN

МЕТОДИКА ПОВЕРКИ

MΠ 208-037-2019

г. Москва

Содержание

Введение		3
1.	Операции поверки	3
2.	Средства поверки	3
3.	Требования безопасности	4
4.	Условия поверки	4
5.	Подготовка к поверке	4
6.	Проведение поверки	5
7.	Оформление результатов поверки	7
8.	Приложение 1	8

Введение

Настоящая методика распространяется на ротаметры серии ТМ, ТМS, ТМО, ТМG, ТМN фирмы «Officine Orobiche S.r.l», Италия, (далее - ротаметры) и устанавливает методику их первичной и периодической поверки.

Шкалы ротаметров градуированы в единицах расхода, измеряемой рабочей среды с учетом всех влияющих параметров (плотности, вязкости, а для газов также давления и температуры). Поверка ротаметров производится на средах-заменителях.

Средами - заменителями являются:

- для измерения расхода жидкости вода,
- для измерения расхода газа воздух или вода (в случаях, когда возможен перерасчет шкалы).

Перерасчет шкалы ротаметра на среду-заменитель производится по формулам, приведенным в приложении 1.

Если данные по паре «конус-поплавок» отсутствуют, то необходимо обратиться с запросом в фирму «Officine Orobiche S.r.l», Италия, для получения необходимой информации.

Межповерочный интервал – 2 года.

1 Операции поверки

- 1.1 При проведении первичной и периодической поверок должны быть выполнены следующие операции:
 - внешний осмотр (п. 6.1);
 - опробование (п. 6.2);
 - определение метрологических характеристик (п. 6.3).

2 Средства поверки

- 2.1 При проведении поверки применяют следующие средства поверки и вспомогательное оборудование:
- установка поверочная 3 разряда в соответствии с приказом Росстандарта от 07.02.2018 г. №256 (часть 1), диапазон воспроизведения объемного расхода воды от 0,001 до 130,0 м³/ч, пределы допускаемой относительной погрешности измерений не более ±0.5 %;
- установка поверочная 1 разряда по ГОСТ Р 8.618-2014, диапазон воспроизведения объемного расхода воздуха от 0,01 до 1200,0 $\rm m^3/ч$, пределы допускаемой относительной погрешности измерений не более $\pm 0,5$ %.
- миллиамперметр постоянного тока для измерений в диапазонах от 4 до 20 мА, класс точности 0,05, ГОСТ 8711-78;
- манометр образцовый класса точности 0,15, диапазон в соответствии с давлением в системе поверочной установки;
 - термометр лабораторный ТЛ-4 диапазон от 0 до 55 °C, цена деления 0,1 °C;
- 2.2 Все средства измерений должны быть поверены аккредитованными юридическими лицами или индивидуальными предпринимателями и иметь действующие свидетельства о поверке.
- 2.3. Допускается применение других аналогичных устройств, не приведенных в п. 2.1, но обеспечивающих определение метрологических характеристик ротаметров с погрешностью не превышающей погрешности при использовании вышеперечисленного оборудования;

3 Требования безопасности

- 3.1 При проведении поверки ротаметров соблюдают требования безопасности, определяемые:
 - -правилами безопасности труда, действующими на поверочной установке;
- -правилами безопасности при эксплуатации используемых средств поверки, приведенными в их эксплуатационной документации;
 - -правилами пожарной безопасности, действующими на предприятии.
 - 3.2. Монтаж и демонтаж ротаметра производят при отключенном питании.
- электрических соединений производят соответствии с ГОСТ 12.3.032-84 и "Правилами устройства электроустановок".
- 3.4. К поверке допускаются лица, имеющие квалификационную группу по технике безопасности не ниже II, в соответствии с "Правилами техники безопасности при эксплуатации электроустановок потребителей", и изучившие эксплуатационную документацию, и настоящий документ.

4 Условия поверки

При проведении поверки выполняют следующие условия:

4.1 Поверку ротаметров проводят во всех значениях расхода (но не менее чем в пяти точках) поверочной среды (вода, воздух), соответствующих оцифрованным отметкам его шкалы.

Измеренные значения расхода регистрируют по показаниям шкалы и/или по данным аналогового выходного сигнала.

- 4.2 Параметры рабочей (среды, используемой при поверке) среды
- 4.2.1 Параметры рабочей среды вода.

 (20 ± 5) - температура рабочей среды, °С

4.2.2 Параметры рабочей среды - воздух.

20 - температура рабочей среды, °С - давление рабочей среды, кПа 101,325

4.3 Параметры окружающей среды:

- температура окружающего воздуха, °С (25 ± 10)

от 30 до 80 - относительная влажность окружающего воздуха, % от 84 до 106.7

- атмосферное давление, кПа

12-30 Напряжение питания, В

Вибрация, источники внешних магнитных или электрических полей должны отсутствовать.

- 4.4 Изменения температур поверочной среды и окружающего воздуха за время поверки не должны превышать $\pm 1,0$ °C.
- 4.5 При поверке ротаметров, если в качестве среды-заменителя используется воздух, температуру и давление поверочной среды измеряют с погрешностью ±0,5 °C и 0.05 kΠa.

5 Подготовка к поверке

- 5.1 Перед проведением поверки выполняют следующие подготовительные работы:
- проверку наличия действующих свидетельств (отметок) о поверке, используемых средств поверки;

- проверку наличия эксплуатационной документации (ЭД) на поверяемый ротаметр;
 - проверку соблюдения условий разделов 3 и 4 настоящей инструкции.
 - 5.2 Подготовка ротаметра к поверке предусматривает следующие операции:
- проверка отсутствия отложений и грязи на внутренней поверхности измерительного конуса и на поверхности поплавка. При необходимости провести их очистку.
- монтаж ротаметра в измерительную линию поверочной установки в рабочем положении (вертикальное, горизонтальное, направление потока рабочей среды) согласно указаниям, ЭД на ротаметр конкретного типа. Длины прямых участков должны соответствовать данным ЭД.
- проверка герметичности мест соединения фланцев под давлением рабочей среды: отсутствие утечек и каплей воды, изменения давления воздуха в трубопроводе установки после выдержки не менее 5 минут.
- подключение к источнику питания ротаметров с электрическим выходным сигналом, предельные выключатели согласно указаниям ЭД.
- подключение к аналоговому выходу эталонное сопротивление, миллиамперметр или милливольтметр согласно положениям ЭД.
- определяют исходные данные для протоколов поверки по расходу поверочной среды, используя сертификат калибровки завода-изготовителя или данные эксплуатационного паспорта.
 - выдержка ротаметров в выключенном состоянии не менее 30 минут.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре проверяют:

- отсутствие механических повреждений на ротаметре, препятствующих его применение;
 - соответствие паспортных данных ротаметра требованиям ЭД;
 - соответствие комплектности ротаметра, указанной в документации;

Ротаметр, не прошедший внешний осмотр к поверке не допускают.

6.2 Опробование

При опробовании проверяют общее функционирование ротаметра: изменяя значение расхода через ротаметр, одновременно наблюдают за изменением показаний шкалы миллиамперметра или показаний шкалы индикатора ротаметра.

Результат опробования считают положительным, если при изменении расхода соответствующим образом изменяются показания ротаметра.

6.3 Определение метрологических характеристик

6.3.1 Определение погрешности ротаметра при измерении расхода

Регулируя значение расхода рабочей среды по показаниям шкалы ротаметра, устанавливают расходы, соответствующим оцифрованным отметкам шкалы. Выбираем минимум 5 точек в диапазоне расходов от 0,1 Q_{max} до Q_{max}. Измерение повторяют дважды: при прямом и обратном ходе поплавка.

На каждой точке расхода регистрируют значения:

- расхода по поверочной установке (Q_y);
- расхода по показания шкалы ротаметра (Q_p);
- тока (показания миллиамперметра) (I_p).

- 6.3.2 Результаты измерений обрабатываются следующим образом.
- 6.3.2.1 Вычисляют приведенную погрешность (по шкале ротаметра), % при измерениях расхода по показаниям шкалы каждого измерения при прямом и обратном ходе поплавка:

$$\gamma_{Q} = \left(\frac{Q_{p} - Q_{y}}{Q \max - Q \min}\right) \cdot 100\% \tag{1}$$

где

Qp, Q_y - значения расхода поверочной среды по показаниям шкалы ротаметра и установки, соответственно ($\chi M^3/\Psi$, $\chi M^3/\Psi$);

Ротаметры прошли проверку если пределы допускаемой приведенной погрешности (по шкале ротаметра) в диапазоне расходов от $0,1~Q_{max}$ до Q_{max} соответствуют значениям таблицы 1.

Таблица 1

Наименование характеристики	Значение характеристики				
	TM, TMO	TMS	TMG	TMN	
Пределы допускаемой приведенной	±2,5	±5	±1,5	±1,5	
погрешности (по шкале ротаметра), %					

6.3.2.2 Результаты измерений расхода по аналоговому выходному сигналу обрабатываются следующим образом.

Рассчитать значение выходного тока Ір, мА, по формуле:

$$Ip = Imin + \frac{(Imax - Imin) \cdot Qp}{Qmax}, \qquad (2)$$

где

Imin – минимальное значение выходного тока 4 мА;

Ітах - максимальное значение выходного тока 20 мА;

Qp - значение расхода по шкале ротаметра $дм^3/q$ (Nm^3/q);

Qmax - максимальное значение расхода по шкале ротаметра $дm^3/q$ (Nm $^3/q$);

Рассчитать приведенную погрешность преобразования расхода в значения постоянного тока ут, %, по формуле

$$\gamma_3 = \frac{\text{Iu - Ip}}{16}$$
(3)

где Іи - измеренное значение тока, мА;

Ір - значение тока, рассчитанное по формуле (2), мА;

 $Q_p,\ Q_y$ — значения расхода поверочной среды по показаниям аналогового сигнала и установки, ${\sf M}^3/{\sf q},\ N{\sf M}^3/{\sf q}$

Значения погрешностей не должны превышать нормированные в ЭД значения (смотри таблицу 2).

Таблица 2

Наименование характеристики	Значение характеристики			
	TM, TMO	TMS	TMG	TMN
Пределы допускаемой приведенной				4.0
погрешности при преобразовании	±2,5	±5	±1,5	±1,5
расхода в значения постоянного тока, %				

7 Оформление результатов поверки

- 7.1. Результаты поверки оформляют протоколом в произвольной форме.
- 7.2. При положительных результатах поверки ротаметров оформляют свидетельство о поверке в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

7.3. При отрицательных результатах поверки ротаметр к применению не допускается, выдают извещение о непригодности к применению в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 № 1815 с указанием причин и изъятием их из обращения, свидетельство о поверке аннулируют или делают соответствующую запись в паспорте ротаметра.

Начальник отдела ФГУП «ВНИИМС»

Б.А. Иполитов

Ведущий инженер ФГУП «ВНИИМС» (Tour)

Д.П. Ломакин

приложение 1

Расчет и построение шкал ротаметров для реальных рабочих сред производится по специальной методике в соответствии с немецкими Правилами VDE / VDI 3513. Массовый расход согласно этим правилам:

$$M = \alpha \cdot D_S \sqrt{g \cdot M_S \cdot \rho \cdot (1 - \frac{\rho}{\rho_S})}$$

гле:

M - массовый расход,

 α - коэффициент расхода,

р- плотность измеряемой среды,

 D_{s} - диаметр поплавка,

ускорение свободного падения,

 $M_{\rm s}$ - масса поплавка,

ρ_s - плотность материала поплавка

Коэффициент расхода α есть функция δ и числа Руппеля $R_{\rm u}$:

$$\alpha = f(\delta; R_U)$$

Число Руппеля определяет влияние вязкости:

$$R_U = \frac{\eta}{\sqrt{g \cdot M_S \cdot \rho (1 - \frac{\rho}{\rho_S})}},$$

Величина $\delta = \frac{D_k}{D_s}$ определяет высоту подъема поплавка от нулевой отметки конуса,

где:

 $D_{\rm k}$ – диаметр конуса;

 $D_{\rm S}$ – диаметр поплавка.

Это функция для каждого типоразмера и формы поплавка ротаметров фирмы "KROHNE" строго индивидуальна. Полученные экспериментально значения δ сведены в таблицы и могут быть отражены графически в виде диаграмм в координатах $R_{\rm u}-\alpha$.

Перерасчет шкалы на вторую измеряемую среду

1-ый шаг

Рассчитывается число Руппеля $R_{\rm ul}$ для первой измеряемой среды:

$$R_{U1}10^{3} = \frac{0,319\eta}{\sqrt{M_{S} \cdot (1 - \frac{\rho}{\rho_{S}})}},$$

2-ой шаг

Рассчитываются коэффициенты расхода для первой среды для 10 точек: $\alpha_{10\%}$; $\alpha_{20\%}$; $\alpha_{30\%}$... $\alpha_{100\%}$ по формуле:

$$\alpha_1 = \frac{0.0887M_1}{D_S \sqrt{M_S \cdot (1 - \frac{\rho}{\rho_S})\rho_1}},$$

3-ий шаг

Для заданного типоразмера ротаметра и формы поплавка по диаграмме или таблице определяются значения δ для тех же точек: $\delta_{10\%}$; $\delta_{20\%}$; $\delta_{30\%}$... $\delta_{100\%}$.

4-ый шаг

Рассчитывается число Руппеля R_{u2} для второй жидкости (например, для водыповерочной измеряемой среды)

$$R_{U2}10^{3} = \frac{0.319\eta_{2}}{\sqrt{M_{S} \cdot (1 - \frac{\rho}{\rho_{S}})\rho_{2}}},$$

5-ый шаг

По диаграмме или таблице определяют коэффициенты расхода α_2 для второй среды при значениях δ , полученных в 3-ем шаге.

По значениям α_2 рассчитывают значения расхода второй среды ($M_{10\%}$; $M_{20\%}$; $M_{30\%}$... $M_{100\%}$) по выражению:

$$\alpha_2 = \frac{0,0887}{D_S \sqrt{M_S \cdot (1 - \frac{\rho}{\rho_S})\rho_2}} M_2,$$

В приведенных формулах **0,319** и **0,0887** - коэффициенты, учитывающие значения величины **g**, вынесенной из-под корня, а также размерностей η и **M**. Указанные значения справедливы для η , выраженной в **cP** и **M** - в **kg/h**.

Остальные величины, входящие в формулы расчета, выражены: D_S - mm, Ms - g, p - g/cm^3 .