Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Омской области» (ФБУ «Омский ЦСМ»)

УТВЕРЖДАЮ:

И.о. директора

ФБУ «Омский ЦСМ»

А.В. Бессонов

мл.

«24» июля 2020 г.

Государственная система обеспечения единства измерений Система автоматизированная информационно-измерительная АИИС-37-15

МЕТОДИКА ПОВЕРКИ

ОЦСМ 098196-2020 МП

РАЗРАБОТЧИКИ:

Начальник отдела поверки и испытаний средств измерений в приборостроении ФБУ «Омский ЦСМ»

Д.С. Нуждин

Ведущий инженер по метрологии ФБУ «Омский ЦСМ»

Д.А. Воробьев

г. Омск 2020 г. Настоящая методика поверки распространяется на систему автоматизированную информационно-измерительную АИИС-37-15 (далее по тексту – ИС) и устанавливает методику ее первичной и периодической поверок.

Поверке подлежит ИС с перечнем измерительных каналов, прошедших процедуру утверждения типа, и на которую распространено свидетельство об утверждении типа (состав измерительных каналов должен соответствовать описанию типа на ИС).

Допускается проведение поверки ИС в части отдельных измерительных каналов, с обязательным указанием в приложении к свидетельству о поверке информации об объеме проведенной поверки.

Допускается проведение поверки ИС с составом ИК, непосредственно применяемых для измерений в сфере государственного регулирования обеспечения единства измерений.

Средства измерений (измерительные компоненты) измерительных каналов ИС поверяются в соответствии с интервалами между поверками, установленным при утверждении их типа. Если очередной срок поверки средства измерений (измерительного компонента) наступает до очередного срока поверки ИС, поверяется только этот компонент, и поверка ИС не проводится. После поверки средства измерений (измерительного компонента) и восстановления измерительных каналов выполняется проверка измерительных каналов, той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой средства измерений (измерительного компонента), не нарушили метрологических характеристик измерительных каналов.

Интервал между поверками ИС - один год.

В методике поверки приняты следующие сокращенные обозначения:

ИС – система автоматизированную информационно-измерительную АИИС-37-15;

ИК – измерительный канал;

МИС – модуль измерений силы от тяги двигателя;

ПП – датчики (первичные преобразователи);

СГУ – стендовое градуировочное устройство;

ДМП – динамометрическая платформа;

 $R_{\rm max}$ – верхний предел диапазона измерений ИК МИС, кгс.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки
Проверка технической документации	7.1
Внешний осмотр	7.2
Опробование	7.3
Определение метрологических характеристик	7.4
Оформление результатов поверки	8

2 Средства поверки

2.1 При проведении поверки применяют основные и вспомогательные средства поверки в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты ИС, а так же приведенные в таблице 2.

Таблица 2

Таолица 2			
Номер пункта	Наименование и тип основного или вспомогательного средства поверки; обозначение		
методики	нормативного документа, регламентирующего основные технические требования и (или		
поверки	метрологические и основные технические характеристики средства поверки		
7.3	Калибратор многофункциональный Fluke 5502E (рег. №55804-13):		
	- воспроизведение напряжения постоянного тока: от 0 до 329,9999 мВ; Δ : $\pm (U \cdot 60 \cdot 10^{-6} + 3 \text{ мкВ})$ В;		
	- воспроизведение силы постоянного тока: от 0 до 32,9999 мА; ∆: ± (<i>I</i> ·100·10 ⁻⁶ + 0,25 мкА) А;		
	- воспроизведение электрического сопротивления постоянному току:		
	от 33 до 109,9999 Ом; Δ : \pm ($R \cdot 90 \cdot 10^{-6} + 0,015$ Ом) Ом; от 110 до 329,9999 Ом; Δ : \pm ($R \cdot 90 \cdot 10^{-6} + 0,02$ Ом) Ом;		
	- воспроизведение напряжения переменного тока: от 0,33 до 3,29999 В (от45 Гц до 10 кГц); Δ: ± (<i>U</i> ·300·10 ⁻⁶ + 60 мкВ) В; от 3,3 до 32,9999 В (от45 Гц до 10 кГц); Δ: ± (<i>U</i> ·300·10 ⁻⁶ + 600 мкВ) В		
7.3	Генератор сигналов произвольной формы 33509В (рег. №53565-13): - от 1 мкГц до 20 МГц; δ: 1·10 ⁻⁶		
7.4	Гири класса M ₁ по ГОСТ OIML R 111-1-2009		
Прибор комбинированный Testo-622 (рег. №53505-13): - от -10 до +60 °С; ∆: ±0,4 °С; - 10 до 95 %; ∆: ±3 %;			
	- от 300 до 1200 гПа; Δ: ±5 гПа		

Примечание – В таблице приняты следующие обозначения:

 Δ – абсолютная погрешность измерений, единица величины;

I – значение воспроизводимой силы тока, A;

U – значение измеряемого (воспроизводимого) напряжения, В:

R – значение воспроизводимого сопротивления, Ом;

F – значение измеряемой (воспроизводимой) частоты, Γ ц

- 2.2 Эталоны единиц величин, используемые при поверке, должны быть аттестованы в установленном порядке. Средства измерений, используемые при поверке, должны быть поверены в установленном порядке.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик ИС с требуемой точностью.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, прошедшие обучение в качестве поверителей данного вида средств измерений, изучившие настоящую методику поверки и эксплуатационную документацию на ИС и средства поверки.

4 Требования безопасности

При проведении поверки должны соблюдаться правила (условия) безопасной работы ИС и средств поверки, указанные в эксплуатационной документации, требования «Правил технической эксплуатации электроустановок потребителей».

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

от +15 до +25:

- относительная влажность окружающего воздуха, %, не более

80;

- атмосферное давление, кПа

от 84,0 до 106,7;

- напряжение питающей сети переменного тока, В

от 207 до 253;

- частота питающей сети, Гц

от 49 до 51.

Примечание — При выполнении поверки ИС условия окружающей среды для основных и вспомогательных средств поверки должны соответствовать требованиям, указанным в их эксплуатационной документации.

6 Подготовка к поверке

Перед проведением поверки выполняют следующие операции:

- проверяют наличие паспорта на действующий контур заземления;
- вторичную часть ИС и основные и вспомогательные средства поверки подготавливают к работе в соответствии с требованиями их эксплуатационной документации;
- вторичную часть ИС и основные и вспомогательные средства поверки выдерживают в условиях, приведенных в разделе 5, в течение времени, указанного в эксплуатационной документации;
- осуществляют подключение основного поверочного оборудования к ИК ИС в соответствии с эксплуатационной документацией.

7 Проведение поверки

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие формуляра на ИС;
- наличие у ПП, входящих в состав ИК ИС, действующих знаков поверки и (или) свидетельств о поверке:
 - наличие свидетельства о предыдущей поверки ИС (при периодической поверке).
- 7.1.2 Результат проверки считают удовлетворительным при условии наличия всей технической документации по 7.1.1 настоящей методики.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра устанавливают соответствие поверяемого ИК ИС следующим требованиям:
 - комплектность ИК ИС должна соответствовать приведенной в формуляре;
- измерительные, вспомогательные и соединительные компоненты (кабельные разъемы, клеммные колодки и т.д.) ИК ИС не должны иметь визуально определяемых внешних повреждений и должны быть надежно соединен и закреплены;
- соединительные линии (кабели, провода) не должны иметь повреждений изоляции и экранирования и должны быть надежно соединены с кабельными разъемами, клеммными колодками и т.д.

7.2.2 Результат внешнего осмотра считают удовлетворительным, если ИК ИС соответствует требованиям по 7.2.1 настоящей методики.

7.3 Опробование

- 7.3.1 Идентификация программного обеспечения
- 7.3.1.1 Идентификация программного обеспечения проводится проверкой наименования, версии и цифрового идентификатора метрологически значимой части функционального программного обеспечения ИС. Проверка проводится в следующем порядке:
 - запустить программу управления комплексами MIC «Recorder»;
- в открывшемся главном окне программы, нажав правую кнопку «мыши» по пиктограмме в левом верхнем углу, выбрать в контекстном меню «О программе»;
- при первичной поверке в открывшемся информационном окне считывают наименование вычислительного модуля, текущую версию (в окне «вер:») и цифровой идентификатор (в окне «ID»), записывают идентификационные данные программного обеспечения в формуляр на ИС;
- при периодической поверке в открывшемся информационном окне считывают наименование вычислительного модуля, текущую версию (в окне «вер:») и цифровой идентификатор (в окне «ID»), сверяют полученные идентификационные данные с данными, приведенными в формуляре на ИС.
 - 7.3.1.2 Результат проверки считают удовлетворительным, если:
 - наименование вычислительного модуля scales.dll;
 - текущая версия не ниже 1.0.0.8;
- цифровой идентификатор (при периодической поверке) соответствует приведенному в формуляре на ИС.
 - 7.3.2 Проверка работоспособности ИС
- 7.3.2.1 При проведении опробования ИС проверяют прохождение сигналов калибратора, имитирующего входные сигналы. Проверяют на мониторе автоматизированного рабочего места оператора показания по регистрируемым в соответствии с конфигурацией ИК ИС параметра технологического процесса.
- 7.3.2.2 Результат проверки считают удовлетворительным, если при увеличении и уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на мониторе автоматизированного рабочего места оператора.

Примечание — Допускается проводить проверку работоспособности ИС одновременно с определением метрологических характеристик ИС по 7.4 настоящей методики.

7.4 Определение метрологических характеристик

7.4.1 Определение метрологических характеристик ИК №№ 1-59; 62-96; 98-131

- 7.4.1.1 ИК ИС подлежат покомпонентной (поэлементной) поверке:
- демонтированные ПП поверяют в лабораторных условиях в соответствии с их методиками поверки;
- вторичную часть ИС (комплекс измерительно-вычислительный MIC-036R и комплекс измерительный магистрально-модульный MIC-140/96, включая линии связи), поверяют на месте установки ИС в соответствии с их методиками поверки с применением средств поверки, приведенных в их методиках поверки.
 - 7.4.1.2 Суммарная погрешность ИК ИС не определяется.

7.4.2 Определение метрологических характеристик МИС (ИК №№ 60, 61, 97)

- 7.4.2.1 Подготовительные работы
- 7.4.2.1.1 Монтируют СГУ в соответствии с требованиями проекта на СГУ и ОСТ 102677-89.
- 7.4.2.1.2 Обеспечивают переговорную или световую (звуковую) связь между оператором СГУ и оператором ИС.

- 7.4.2.1.3 Проверяют правильность функционирования и прочность всех элементов СГУ путем нагружения последовательно нагрузками 0,3; 0,5; 0,8 и 1,1 от верхнего предела диапазона измерений с остановкой на каждой нагрузке, выдержкой трех минут и внешним осмотром элементов СГУ на отсутствие механических повреждений и ослабления элементов крепления. При обнаружении неисправностей проводят работы по их устранению.
 - 7.4.2.2 Определение порога реагирования МИС
- 7.4.2.2.1 Порог реагирования МИС определяется при воздействии на ДМП сил, равных 0,1 и 1,0 от верхнего предела диапазона измерений.
 - 7.4.2.2.2 Порядок выполнения операции:
- помещают на грузоприемное устройства СГУ плавно (без толчков) такое количество дополнительных гирь, при котором появляется реагирование показаний ИС;
- фиксируют значение массы гирь q_i , кгс, и убирают дополнительные гири с грузоприемного устройства;
 - повторяют эксперимент с помещением гирь еще четыре раза.
 - 7.4.2.2.3 Порог реагирования г, кгс, определяется по формуле:

$$r = J \cdot q_{\rm cp} \cdot \frac{g}{g_{\rm H}},\tag{1}$$

где Ј – передаточное соотношение СГУ;

 $q_{\rm cp}$ — среднее арифметическое значение дополнительных гирь, помещенных на грузоприемное устройство СГУ, кг;

g – ускорение свободного падения в месте проведения измерений (g = 9,815 м/с²), м/с²;

 $g_{\rm H}$ – нормальное ускорение свободного падения ($g_{\rm H}$ = 9,807 м/с²), м/с².

- 7.4.2.2.4 Порог реагирования не должен превышать 0,02 % от верхнего предела диапазона измерений.
 - 7.4.2.3 Определение погрешности МИС
 - 7.4.2.3.1 Погрешность МИС определяют по результатам градуировки с помощью СГУ.
 - 7.4.2.3.2 Порядок выполнения операции:
 - приводят МИС в рабочее состояние согласно указаниям эксплуатационной документации;
- нагружают МИС с помощью СГУ до максимального значения силы и выдерживают при этой нагрузке не менее трех минут;
 - разгружают МИС;
 - нагружают МИС до максимального значения и без выдержки разгружают;
 - фиксируют нулевые показания МИС;
- задают от СГУ последовательность из одиннадцати значений силы от нуля до максимального значения (прямой ход) и от максимального значения до нуля (обратный ход). На каждой ступени нагружения производят регистрацию показаний МИС;
 - повторяют указанные операции еще не менее двух раз.
- 7.4.2.3.3 Определяют и исключают анормальные результаты наблюдений, т.е. результаты, содержащие грубые погрешности. Проверку производят на каждой контрольной точке отдельно для прямых и обратных ходов градуировок. Расчет случайной составляющей основной погрешности выполняют по ОСТ 1 02517-84.
- 7.4.2.3.4 Среднее квадратическое отклонение случайной составляющей абсолютной погрешности МИС в к-ой контрольной точке определяют по формуле:

$$\tilde{\sigma}[\Delta_0]_{\kappa} = \sqrt{\frac{\sum_{i=1}^{n'} \left(X_{\kappa i} - \overline{X_{\kappa}}'\right) + \sum_{j=1}^{n''} \left(X_{\kappa j} - \overline{X_{\kappa}}''\right)}{n' + n'' - 1}},$$
(2)

где $\overline{X_{\kappa}}'$, $\overline{X_{\kappa}}''$ – средние арифметические значения показаний МИС для прямого и обратного ходов градуировочной характеристики для к-ой ступени нагружения, кгс;

n' и n'' – число наблюдений в κ -ом ряду измерений, оставшееся после исключения результатов, содержащих грубые погрешности.

7.4.2.3.5 Среднее квадратическое отклонение случайной составляющей абсолютной погрешности МИС от гистерезиса в к-ой контрольной точке определяют по формуле:

$$\tilde{\sigma}[\Delta_{\rm H}]_{\rm K} = \frac{\overline{X_{\rm K}}' - \overline{X_{\rm K}}''}{2 \cdot \sqrt{3}} \tag{3}$$

 $\tilde{\sigma}[\Delta_{\rm H}]_{\rm K} = \frac{\overline{X_{\rm K}}' - \overline{X_{\rm K}}''}{2 \cdot \sqrt{3}}$ (3) 7.4.2.3.6 Случайную составляющую абсолютной погрешности МИС в к-ой контрольной точке определяют по формуле:

(4)

 $\tilde{\Delta}_{0 \ \kappa} = t_{\alpha} \cdot \sqrt{(\tilde{\sigma}[\Delta_{0}]_{\kappa})^{2} + (\tilde{\sigma}[\Delta_{H}]_{\kappa})^{2}},$ t_{α} – коэффициент Стьюдента-Фишера (по таблице А.1 Приложения А). где

7.4.2.3.7 Систематическую составляющую абсолютной погрешности МИС в к-ой контрольной точке определяют по формуле:

(5)

 $\widetilde{\Delta}_{os\ \kappa} = \overline{X_{\kappa}} - R_{\kappa},$ $\overline{X_{\kappa}}$ – среднее арифметическое значение показаний МИС в к-ой контрольной точке, кгс; где

 $R_{\rm K}$ – сила, воспроизведенная СГУ в к-ой контрольной точке, кгс.

Среднее арифметическое значение показаний МИС в к-ой контрольной точке определяют по формуле:

> $\overline{X_{\kappa}} = \frac{\overline{X_{\kappa}}' + \overline{X_{\kappa}}''}{2}$ (6)

ходов градуировочной характеристики для к-ой ступени нагружения, кгс.

Силу, воспроизведенная СГУ в к-ой контрольной точке, определяют по формуле:

$$R_{\rm K} = q_{\rm K} \cdot \frac{g}{g_{\rm W}},\tag{7}$$

 q_{κ} – значение дополнительных гирь, помещенных на грузоприемное устройство СГУ в κ -ой контрольной точке, кг;

g – ускорение свободного падения в месте проведения измерений ($g = 9.815 \text{ м/c}^2$), м/c^2 ;

 $g_{\rm H}$ – нормальное ускорение свободного падения ($g = 9,807 \, {\rm m/c^2}$), ${\rm m/c^2}$.

7.4.2.3.8 Определяют абсолютную погрешность МИС в к-ой контрольной точке по формуле:

 $\tilde{\Delta}_{\kappa} = \tilde{\Delta}_{o \; \kappa} + \tilde{\Delta}_{o \; \kappa}$. (8) 7.4.2.3.9 Определяют относительную погрешность МИС в κ -ой контрольной точке по формуле:

$$\tilde{\delta}_{K} = \frac{\tilde{\Delta}_{K}}{R_{K}} \cdot 100 \%. \tag{9}$$

7.4.2.3.10 Определяют приведенную (к 0,5 · R_{max}) погрешность МИС в κ -ой контрольной точке по формуле:

> $\tilde{\gamma}_{\kappa} = \frac{\tilde{\Delta}_{\kappa}}{0.5 \cdot R_{max}} \cdot 100 \%.$ (10)

7.4.2.3.11 Результаты поверки считают положительными, если:

- приведенная (к $0.5 \cdot R_{\text{max}}$) грешность МИС в диапазоне от 0 до $0.5 \cdot R_{\text{max}}$ включ. не превышает \pm 0,5 % (ИК №№ 60, 61) и \pm 0,3 % (ИК № 97);
- относительная погрешность МИС в диапазоне св. $0.5 \cdot R_{\text{max}}$ до R_{max} не превышает $\pm 0.5 \%$ (ИК №№ 60, 61) и \pm 0,3 % (ИК № 97).

Оформление результатов поверки

- Результаты поверки оформляются протоколом поверки свободной формы.
- 8.2 Положительные результаты поверки оформляются свидетельством о поверке установленного образца. В приложении к свидетельству о поверке указывают перечень и состав ИК, прошедших поверку и пригодных к применению.
- В случае если отдельные ИК были забракованы по пунктам раздела 7, ИС признается непригодной в части ИК не прошедших поверку с положительным результатом. На ИС выдают извещение о непригодности к применению установленного образца с указанием причин непригодности. В приложении к извещению о непригодности к применению указывается перечень и состав ИК, не соответствующих требованиям, установленным в описании типа ИС.

Приложение А (справочное) Значения коэффициента Стьюдента-Фишера

Число степеней свободы	t_{α}
f = n-1	(при доверительной вероятности $P = 0.95$)
1	12,706
2	4,303
3	3,182
4	2,776
5	2,571
6	2,447
7	2,365
8	2,306
9	2,262
10	2,228
11	2,201
12	2,179
13	2,160
14	2,145
15	2,131
16	2,120
17	2,110
18	2,103
19	2,093
20	2,086
21	2,080
22	2,074
23	2,069
24	2,064
25	2,060
26	2,056
27	2,052
28	2,048
29	2,045
30	2,042
40	2,042
60	2,000
120	1,980
~	1,960