СОГЛАСОВАНО

УТВЕРЖДАЮ

Главный метролог ОАО «Уфимское машиностроительное производственное объединение» Руководитель ГЦИ СИ ФГУ «32 ГНИИИ Минобороны России»

С.И. Донченко

_ 2010 г.

А.В. Волков

«____» _____2010 г.

Инструкция

Система измерительная СИ-КС

Методика поверки 279.01.62.000 МП

СОДЕРЖАНИЕ

		Стр.
	Введение	3
1	Нормативные ссылки	4
2	Обозначения и сокращения	5
3	Операции поверки	6
4	Средства поверки	7
5	Требования безопасности	8
6	Условия поверки	9
7	Подготовка к поверке	10
8	Проведение поверки	10
8.1	Внешний осмотр	10
8.2	Загрузка компьютерной программы	10
8.3	Опробование	11
8.4	Порядок проведения поверки	11
8.4.1	Установление способов поверки	11
8.4.2	Установление параметров поверки	12
8.4.3	Поверка ИК давления и силы постоянного тока, соответствующей значению	12
	давления	
8.4.4	Поверка ИК температуры с термометрами сопротивления	14
8.4.5	Поверка ИК температуры с термоэлектрическими преобразователями XA	
	ПР, ХК и напряжения постоянного тока, соответствующего значениям тем-	-
	пературы	
8.4.6	Поверка ИК расхода топлива	17
9	Обработка результатов поверки	18
10	Оформление результатов поверки	22
•	сение А. Технические и метрологические характеристики измерительной сис-	
темы СІ		23
-	сение Б. Значения коэффициента Стьюдента-Фишера в зависимости от числа	
	й свободы при доверительной вероятности P= 0,95	. 25
	тение В. Протокол №определения погрешностей и диапазонов измерений	
	мерительной системы СИ-КС стенда № 5 для испытаний камер сгорания из-	
делий «	99», «96», «117С», «117» и их модификаций (Форма)	26

Введение

Настоящая методика поверки (МП) устанавливает порядок, методы и средства проведения первичной и периодической поверок системы измерительной СИ-КС (далее - ИС) стенда испытательного № 5, предназначенного для проведения испытаний камер сгорания изделий «99», «96», «117С», «117» и их модификаций на предприятии ОАО «Уфимское машиностроительное производственное объединение», г. Уфа.

Технические и метрологические характеристики измерительных каналов (ИК) ИС приведены в таблице 1 приложения A.

МП разработана в соответствии с требованиями: ГОСТ 8.009, ГОСТ 8.207, ПР 50.2.006-94, МИ 2083-90, РМГ 51-2002.

ИС представляется на поверку со следующими комплектами технической документации: формуляром, руководством по эксплуатации, методикой поверки.

ИС включает в себя измерительные каналы (ИК):

- давления и силы постоянного тока, соответствующей значениям давления;
- температуры с термометрами сопротивления и сопротивления постоянному току, соответствующего значениям температуры;
- температуры с термоэлектрическими преобразователями ХА, ХК и напряжения постоянного тока, соответствующего значениям температуры;
 - расхода топлива.

Поверка ИК ИС должна проводиться одним из следующих способов:

- *комплектным* с оценкой метрологических характеристик¹⁾ (МХ) по результатам сквозной градуировки ИК (комплектный 1);
 - комплектным с оценкой МХ ИК по МХ элементов ИК (комплектный 2);

Обработка результатов поверки ИК должна проводиться:

- в соответствии с ГОСТ 8.207 при прямых измерениях;
- в соответствии с МИ 2083-90 при косвенных измерениях.

Периодичность поверки ИС- один раз в год.

Метрологические характеристики ИК ИС, подлежащие определению при проведении поверки представлены в таблице 1.

Таблица 1

Наименование метрологической характеристики	Условное обозначение
1 Характеристики, предназначенные для определения ре-	
зультатов измерений:	полином степени п ≤4
1.1 Индивидуальная функция преобразования	$x=f(y)=a_0+a_1+a_ny^n;$
	кусочно-линейная функция
	$x=x_{\kappa}+q_{sfk}(y-y_{\kappa})$
1.2 Цена единицы наименьшего разряда кода АЦП	${ m q_{sf}}$
2 Характеристики погрешностей:	
2.1 Характеристики основной погрешности на каждой к-той	
контрольной точке:	
2.1.1 Неисключенная систематическая составляющая абсолютной погрешности	$\widetilde{\Delta}_{os\kappa}$
2.1.2 Среднее квадратическое отклонение случайной со-	$\widetilde{\sigma}[_{\dot{\Delta}_{o\kappa}}]$
ставляющей абсолютной погрешности	- ok ≈
2.1.3 Абсолютное значение вариации	$\widetilde{H}_{o\kappa}$
2.1.4 Случайная составляющая абсолютной погрешности	
216.45	$\widetilde{\Delta}_{o\kappa}$
2.1.6 Абсолютная погрешность	$ ilde{\Delta}_o$
2.1.7 Приведенная погрешность к ВП	$ ilde{\gamma}_o$

¹⁾ МХ ИК - индивидуальная функция преобразования и погрешности ИК

1 Нормативные ссылки

- ПР 50.2.006-94 ГСИ Порядок проведения поверки средств измерений:
- ГОСТ 8.009-84 ГСИ. Нормируемые метрологические характеристики средств измерений;
- ГОСТ 8.207-2001 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения.
- МИ 2083-90 ГСИ Измерения косвенные. Определение результатов измерений и оценивание их погрешностей;
- МИ 187-86 ГСИ Средства измерений. Критерии достоверности и параметры методик поверки;
- МИ 188-86 ГСИ Средства измерений. Установление значений параметров методик поверки:
- ГОСТ Р 8.625 2006 Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний;
- ГОСТ Р 8.624 2006 Термометры сопротивления из платины, меди и никеля. Методика поверки;
- ГОСТ Р 8.585-2001 ГСОЕИ Термопары. Номинальные статические характеристики преобразования;
 - ГОСТ 8.338-2002 ГСИ Преобразователи термоэлектрические. Методика поверки;
 - РМГ 51-2002 ГСИ. Документы на методики поверки средств измерений.

2 Обозначения и сокращения

МП – методика поверки;

КД - конструкторская документация;

ИК – измерительный канал;

ИС – измерительная система;

ПП – первичный преобразователь;

АЦП – аналого-цифровой преобразователь;

ИВК – измерительно-вычислительный комплекс;

ДМП – динамометрическая платформа;

РЭ – рабочий эталон;

ТПР (ТДР) – турбинный преобразователь расхода жидкости;

НСП – неисключенная систематическая погрешность;

СКО - среднее квадратическое отклонение;

НСХП – номинальная статическая характеристика преобразования;

МХ – метрологические характеристики;

ВП – верхний предел измерений;

НЗ – нормированное значение;

SCMPB01 – устройство сопряжения;

SCM5B34 - 01, SCM5B34 - 03, SCM5B36, SCM5B36 - 01, SCM5B37K - 01,

SCM5B30 - 01, SCM5B30 - 02, SCM5B45- 01 - модули нормализации;

PCL – 816, PCI – 1713 – аналого-цифровые преобразователи;

IPC – 622 – промышленный компьютер.

3 Операции поверки

3.1 При проведении первичной и периодической поверок ИК должны выполняться операции, указанные в таблице 2.

Таблица 2

Наименование операции	Номер	Проведение операции пр	
	пункта МП	первичной	периодиче-
		поверке (по-	ской поверке
		сле ремонта)	
1 Внешний осмотр	8.1	да	да
2 Загрузка компьютерной программы	8.2	да	да
3 Опробование	8.3	да	да
4 Проведение поверки	8.4	да	да
5 Определение индивидуальной функции преобразования	9.2	да	да
6 Определение погрешностей ИК	9	да	да

4 Средства поверки

4.1 При проведении поверки используются рабочие эталоны и вспомогательные средства поверки, приведенные в таблице 3.

Таблица 3

Номер пунк- та методики	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламен-
поверки	тирующего технические требования, и (или) метрологические и основные
поосрки	характеристики средства поверки
	Калибратор давления DPI 610: диапазон воспроизведения давления от ми-
8.4.3	нус 0,1 до 0,2 МПа, пределы допускаемой относительной погрешности
	± 0,025 %)
8.4.3	Манометр грузопоршневой МП-6: диапазон воспроизведения давления от
	0 до 0,6 МПа, пределы допускаемой относительной погрешности \pm 0,05 %
8.4.3, 8.4.4,	Калибратор многофункциональный TRX-IIR: диапазон воспроизведения
8.4.5	сопротивления от 0 до 400 Ом, пределы допускаемой относительной по-
	грешности \pm (0,005 % от показаний \pm 0,02 % от диапазона), диапазон вос-
	произведения напряжения постоянного тока от минус 10 до 100 мВ, преде-
	лы допускаемой относительной погрешности ± (0,01 % от показаний +
	+ 0,005 % от диапазона), диапазон воспроизведения силы постоянного тока
	от 0 до 24 мА, пределы допускаемой относительной погрешности ± (0,01 %
	от показаний + 0,02 % от диапазона)
8.4.4, 8.4.5	Калибратор температуры FLUKE серии 500, модель 518: диапазон воспро-
	изведения температуры от минус 30 до 670 °C, пределы допускаемой абсо-
	лютной погрешности ± 0,25 °C
8.4.5	Калибратор температуры эталонный КТ-1100: диапазон воспроизведения
	температуры от 300 до 1100 °C, пределы допускаемой абсолютной по-
	грешности \pm 1,5 °C
8.4.6	Генератор сигналов низкочастотный прецизионный Г3-110: диапазон вос-
	произведения частоты от 0,01 Гц до 10 МГц, пределы допускаемой относи-
	тельной погрешности воспроизведения $\pm 5.10^{-5}$ %
	Вспомогательные средства поверки
8.4.3 - 8.4.6	Барометр рабочий сетевой БРС-1М-3: диапазон измерений абсолютного
	давления от 5 до 1100 гПа, пределы допускаемой абсолютной погрешности
	± 0,33 r∏a
8.4.3 - 8.4.6	Измеритель влажности и температуры ИВТМ-7: диапазон измерений влаж-
	ности от 10 до 98 %, пределы допускаемой абсолютной погрешности изме-
	рений влажности \pm 2,0 %; диапазон измерений температуры от минус 20 до
	60 °C, пределы допускаемой абсолютной погрешности измерений темпера-
	туры \pm 1 °C в диапазонах от минус 20 до 0 °C, от 40 до 60 °C, пределы до-
	пускаемой абсолютной погрешности измерений температуры ± 0,5 °C в
	диапазоне от 0 до 40 °C

- 4.2 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящей методики.
 - 4.3 При поверке должны использоваться средства, внесенные в Госреестр СИ.
- 4.4 Используемые при поверке средства измерений должны быть поверены и иметь действующие свидетельства о поверке.
- 4.5 Вспомогательные средства поверки должны быть поверены и иметь действующие свидетельства о поверке.
- 4.6 Перед проведением поверки средства поверки должны находиться в помещении с условиями окружающей среды, указанными в разделе 4 настоящей методики, не менее 12 часов.

5 Требования безопасности

- 5.1 При подготовке и проведении поверки ИС должны быть проведены мероприятия по обеспечению требований по безопасности (электробезопасность, пожаробезопасность и др.), а также к заземлению, металлизации и электрической изоляции, установленные ГОСТ РВ 20.39.309 или в технической документации (ТД) на стенд № 5 цеха № 7 Б ОАО «Уфимское машиностроительное производственное объединение», г. Уфа.
 - 5.2 При проведении поверочных работ необходимо соблюдать требования

ГОСТ 12.1.019-79, ГОСТ 12.1.030-81, ГОСТ 12.3.019-80, ГОСТ 22261-94 и руководствоваться: «Правилами технической эксплуатации электроустановок потребителей», введенными приказом Минэнерго РФ от 13.01.2003 г., и «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок» ПОТ Р М-016-2001, РД 153-34.0-03.150-00, утвержденными Министерством энергетики 27.12.2000 г. и Министерством труда и социального развития РФ 05.01.2001 г.

- 5.3 При подготовке и проведении аттестации следует соблюдать требования безопасности и производственной санитарии, установленные в ТД на стенд № 5 и средства измерений.
- 5.4 К работе по выполнению поверки допускаются лица, прошедшие аттестацию по технике безопасности и промышленной санитарии, ознакомленные с эксплуатационной документацией на стенд № 5, с инструкцией по эксплуатации электрооборудования стенда и с настоящей методикой;
- 5.5 Работы по выполнению поверки ИС должны проводится по согласованию с лицами, ответственными за эксплуатацию стенда № 5.

6 Условия поверки

 6.1 Условия окружающей среды в испытательном боксе: - температура воздуха, °С (К)
- атмосферное давление, мм рт.ст. (кПа) от 720 до 800 (от 96 до 106,7).
Условия окружающей среды в помещении пультовой:
- температура воздуха, °C (K)
- относительная влажность воздуха , $\%$
- атмосферное давление, мм рт.ст. (кПа) от 720 до 800 (от 96 до 106,7).
Питание электронных приборов и ЭВМ:
- напряжение питающей сети, В
- частота питающей сети, Γ ц

Примечание - При проведении поверочных работ условия окружающей среды средств поверки (рабочих эталонов) должны соответствовать требованиям, указанным в их руководствах по эксплуатации.

7 Подготовка к поверке

- 7.1 При подготовке к поверке провести следующие работы:
- проверить комплектность эксплуатационной документации ИС;
- проверить наличие поверочных клейм, а также свидетельств о поверке на эталонные и вспомогательные средства поверки;
 - подготовить к работе все приборы и аппаратуру согласно руководству по их эксплуатации;
- собрать схемы поверки ИК в соответствии с блок-схемами, приведенными в разделе 8 методики поверки 279.01.62.000.00 МП, и проверить целостность электрических цепей;
- обеспечить оперативную связь оператора у монитора с оператором, задающим контрольные значения эталонных сигналов на входе ИК;
 - включить вентиляцию и освещение в испытательных помещениях;
 - включить питание измерительных преобразователей и аппаратуры ИС;
 - создать, проконтролировать и записать в протокол поверки условия проведения поверки.

8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 При внешнем осмотре установить соответствие ИС следующим требованиям:
- комплектность ИС должна соответствовать формуляру на ИС;
- маркировка ИС должна соответствовать требованиям эксплуатационной документации;
- наличие и сохранность пломб (согласно сборочным чертежам);
- измерительные средства, входящие в ИС, не должны иметь внешних повреждений, которые могут влиять на работу ИС, при этом должно быть обеспечено надежное крепление соединителей и разъемов, отсутствие нарушений экранировки кабелей и качественное заземление.
- 8.1.2 Результаты внешнего осмотра считать положительными, если выполняются вышеприведенные требования.

8.2 Загрузка компьютерной программы

Комплектная и поэлементная поверка измерительных каналов (ИК) осуществляется задачей «Метрология», работающей в программной среде ИС, разработанной в ОС QNX - 4. Для запуска программы выполнить следующие шаги:

- 8.2.1 Включить ИС.
- 8.2.2 Войти в меню задач и выбрать задачу «Метрология».
- 8.2.3 Задача имеет панель меню, из которого нужно выбрать тип исследуемого ИК. При выборе типа открывается список всех измеряемых параметров данного типа.
 - выбрать нужный параметр из списка;
 - в выпадающем списке режимов работы выбрать тип производимой работы;
- в выпадающем списке операций выбрать тип операции измерения, ручной ввод, обработка;
- после выбора операции появляется окно «Ввод условий». В этом окне устанавливаются: число градуировок, число ступеней измерения, число измерений на ступени;
- частота выборки и размер выборки задаются изначально в базе данных по каждому параметру. Эти величины возможно корректировать.
 - 8.2.4 Провести поверку выбранного ИК в следующей последовательности:
- установить на РЭ значение поверяемого параметра первой ступени нагружения на прямом ходе:
 - выполнить измерение;

- повторить данные операции для всех ступеней на прямом и обратном ходе.

Примечание - Для исправления одного или нескольких значений необходимо вернуться к ошибочно записанной ступени и заново выполнить измерения. После этого устанавливать значения рабочим эталоном и вести регистрацию в соответствии с ранее изложенной последовательностью операций.

- 8.2.5 Провести обработку результатов градуировок ИК, для чего необходимо:
- заново выбрать интересующий параметр из списка;
- выбрать тип выполняемой операции «обработка». На экране появятся выполненные измерения по данному параметру;
- после просмотра измеренных значений система подсказывает степень аппроксимирующего полинома, дающего наименьшую погрешность;
 - распечатывается протокол поверяемого ИК.

Результаты обработки записываются в базу данных.

8.3 Опробование ИК

При опробовании ИК проверить правильность его функционирования.

Для этого необходимо зарегистрировать результаты показаний «нулей» ИК, а также - результаты показаний ИК при подаче на вход с помощью рабочих эталонов значений физических величин равных 0,5 ВП и 1,0 ВП.

Оценить разности значений физических величин, задаваемых рабочим эталоном и измеренных ИС.

Убедиться в правильности функционирования ИК.

Результаты опробования считать положительными, если показания ИС совпадают с заданными эталонными значениями в пределах допускаемой погрешности измерений параметра ИК ИС.

8.4 Порядок проведения поверки

8.4.1 Установление способов поверки

Установлены следующие способы поверки ИК ИС:

- ИК силы постоянного тока, соответствующей значениям давления, ИК напряжения постоянного тока, соответствующего значениям температуры, ИК сопротивления постоянному току, соответствующего значениям температуры комплектный (прямые измерения) с оценкой МХ ИК по результатам сквозной градуировки ИК (комплектный 1);
- ИК температуры с термоэлектрическими преобразователями ХА, ХК, ИК температуры с термометрами сопротивления: комплектный (прямые измерения) с оценкой МХ ИК по результатам сквозной градуировки ИК (комплектный 1);
- комплектный (прямые измерения) с оценкой МХ ИК по МХ элементов ИС (для термоэлектрических преобразователей ХА, ХК и термометров сопротивления неутвержденного типа) (комплектный 2);
 - ИК давления:
- комплектный прямые измерения с оценкой МХ ИК по результатам сквозной градуировки ИК (комплектный 1);
- комплектный (прямые измерения) с оценкой МХ ИК по МХ элементов ИС (комплектный 2);
- ИК расхода топлива комплектный (косвенные измерения) с оценкой МХ ИК по МХ элементов ИС (комплектный 2).

Комплектную поверку ИК проводить в следующей последовательности.

- 8.4.2.1 Провести сквозную градуировку ИК системы или градуировку ее элементов, для чего необходимо:
- задать с помощью РЭ на входе ИК или элемента ИК системы в диапазоне измерений последовательно р контрольных значений (ступеней) входной величины \mathbf{x}_{κ} от \mathbf{x}_{0} до \mathbf{x}_{p} (прямой ход) и р контрольных значений входной величины \mathbf{x}_{κ} от \mathbf{x}_{p} до \mathbf{x}_{0} (обратный ход)

$$x_{\kappa}=x_0+((x_p-x_0)/p)\times\kappa$$

где: к - номер ступени (контрольной точки), $\kappa = 0, 1, 2...p;$

 x_0, x_0 - нижний и верхний пределы диапазона измерений поверяемых каналов;

- на каждой ступени при прямом и обратном ходе произвести **m** отсчетов измеряемой величины (значение параметра m определяется частотой опроса ИК и временем измерения). Указанные циклы градуировки (прямой и обратный ходы) повторить 1 раз. В результате в памяти компьютера запоминаются массивы значений выходной величины $\mathbf{y'}_{i\kappa n}$ при прямом ходе и $\mathbf{y''}_{i\kappa n}$ при обратном ходе,

где: **i**-номер градуировки; (i = 1, 2,l);

n-номер отсчета в каждой контрольной точке (n = 1, 2,m).

Примечание - Для ИК с пренебрежимо малой погрешностью вариации допускается обратные ходы градуировки не проводить.

Подход к выбору количества ступеней нагружения и количества отсчетов в каждой контрольной точке при проведении поверки ИК в общем виде изложен в методических указаниях МИ 187, МИ 188.

С учетом рекомендаций этих документов, а также исходя из опыта применения средств и методов измерений, близких к используемым в ИС, могут быть приняты следующие значения параметров p, l, m:

- при первичной поверке р≥5; 1≥5; m≥50;
- при периодической поверке: p≥5; 1≥3; m≥50.

Принятые значения параметров p, l, m в дальнейшем могут быть скорректированы по результатам первичной и периодической поверок ИС.

- 8.4.2.2 Оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.
- 8.4.3 Поверка ИК давления и силы постоянного тока, соответствующего значению давления
- 8.4.3.1 *Комплектную поверку (прямые измерения)* ИК давления с оценкой МХ по результатам сквозной градуировки ИК проводить в следующей последовательности:
- отсоединить вход первичного преобразователя давления от измерительной пневмомагистрали испытательного стенда и соединить его с РЭ давления (DPI 610; манометр грузопоршневой МП-6). Схемы подключения ИК давления к РЭ показаны на рисунках 1, 2.

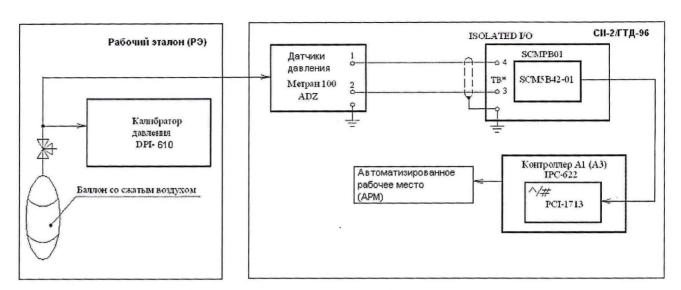


Рисунок 1 — Схема комплектной поверки ИК давления рабочим эталоном DPI-610

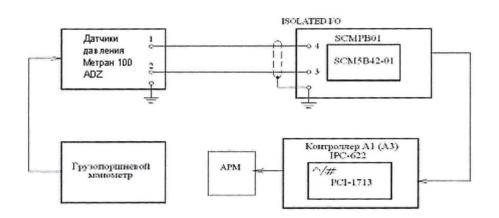


Рисунок 2 — Схема комплектной поверки ИК давления рабочим эталоном МП-6

- провести градуировку ИК давления по методике раздела 8.4.2.1;
- оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики поверки.
- 8.4.3.2 *Комплектную поверку (прямые измерения)* ИК давления с оценкой МХ ИК по МХ элементов ИК проводить в следующей последовательности:
- провести поверку датчика давления ADZ по методике «Датчики давления ADZ SML. Методика поверки», согласованной начальником 32 ГНИИИ МО Р Φ ;
- провести поверку датчика давления Метран-100 в соответствии с методикой поверки МИ 412-012-2001;
 - подключить ИК без датчика давления к РЭ (калибратор TRX-IIR) по схеме рисунка 3;
 - провести градуировку ИК по методике раздела 8.4.2.1;
- оценить МХ ИК давления в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.

- 8.4.3.3 Комплектную поверку (прямые измерения) ИК силы постоянного тока, соответствующей значениям давления, с оценкой МХ по результатам сквозной градуировки ИК проводить в соответствии с функциональной схемой, приведенной на рисунке 3, в следующей последовательности:
 - подключить ИК к РЭ (калибратор TRX-IIR) по схеме рисунка 3;
 - провести градуировку ИК по методике раздела 8.4.2.1;
- оценить МХ ИК силы постоянного тока, соответствующей значениям давления, по методике раздела 9.
- 8.4.3.4 Результаты поверки ИК давления и силы постоянного тока, соответствующей значениям давления, считать положительными, если значения погрешностей ИК находятся в пределах, указанных в таблице 1 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

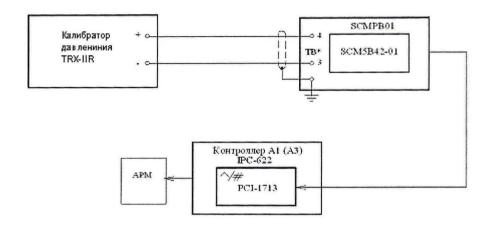


Рисунок 3 – Схема комплектной поверки ИК давления

- 8.4.4 Поверка ИК температуры с термометрами сопротивления
- 8.4.4.1 *Комплектную поверку* (прямые измерения) ИК температуры с термометрами сопротивления с оценкой МХ по результатам сквозной градуировки ИК проводить в следующей последовательности:
 - подключить ИК к РЭ (калибратор FLUKE) по схеме рисунка 4;
 - провести градуировку ИК по методике раздела 8.4.2.1;
- оценить МХ ИК температуры с термометрами сопротивления в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.

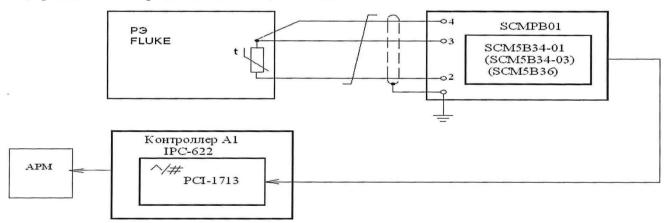


Рисунок 4 — Схема комплектной поверки ИК температуры с термометрами сопротивления

- 8.4.4.2 Комплектную поверку (прямые измерения) ИК температуры с термометрами сопротивления с оценкой МХ ИК по МХ элементов ИК проводить в следующей последовательности:
- определить MX термометров сопротивления по методике поверки ГОСТ Р 8.624-2006;
- подключить ИК температуры без термометров сопротивления к РЭ (калибратор TRX-IIR) по схеме рисунка 5;
- провести градуировку ИК по методике раздела 8.4.2.1, используя НСХП по ГОСТ P 8.625-2006;
- оценить МХ ИК температуры с термометрами сопротивления в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.

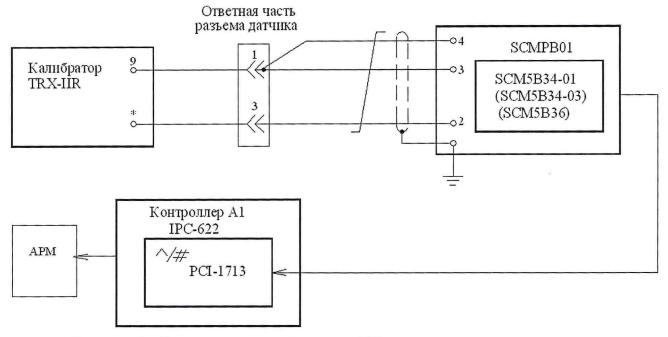


Рисунок 5 — Схема комплектной поверки ИК температуры с термометрами сопротивления и сопротивления постоянному току, соответствующего значениям температуры

8.4.4.4 Результаты поверки ИК температуры с термометрами сопротивления считать положительными, если значения погрешностей ИК находятся в пределах, указанных в таблице 1 приложения А.

В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

- $8.4.5\ \Pi$ оверка ИК температуры с термоэлектрическими преобразователями XA, ΠP , XK и напряжения постоянного тока, соответствующего значениям температуры
- 8.4.5.1 *Комплектную поверку (прямые измерения)* ИК температуры с термоэлектрическими преобразователями с оценкой МХ по результатам сквозной градуировки ИК проводить в следующей последовательности:
- подключить ИК к РЭ (FLUKE или КТ-1100 в зависимости от диапазона воспроизводимых температур) по схеме рисунка 6;
 - провести градуировку ИК по методике раздела 8.4.2.1;
- оценить МХ ИК температуры с термоэлектрическими преобразователями XA, XK в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.

Рисунок 6 – Схема комплектной поверки ИК температуры с термоэлектрическими преобразователями XA, XK рабочими эталонами «FLUKE», «КТ-1100»

- 8.4.5.2 Комплектную поверку (прямые измерения) ИК температуры с термоэлектрическими преобразователями с оценкой МХ ИК по МХ элементов проводить в следующей последовательности:
- определить MX термоэлектрических преобразователей по методике поверки ГОСТ 8.338-2002;
- подключить ИК температуры без термоэлектрического преобразователя к РЭ (калибратор TRX-IIR) по схеме рисунка 7;
- провести градуировку ИК по методике раздела 8.4.2.1, используя НСХП по ГОСТ Р 8.585-2001;
- оценить МХ ИК температуры с термоэлектрическим преобразователем в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.

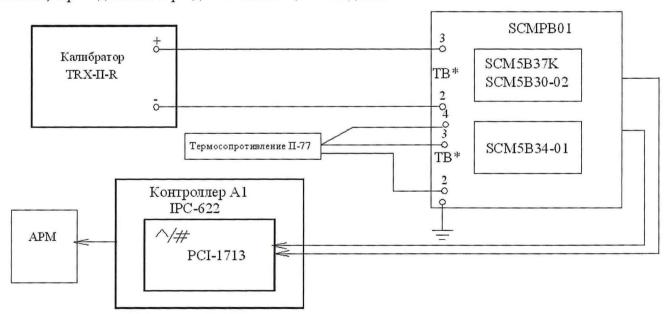


Рисунок 7 — Схема комплектной поверки ИК температуры с термоэлектрическими преобразователями XA, ПР и напряжения постоянного тока, соответствующего значениям температуры, измеряемой с помощью термоэлектрических преобразователей ХК

- 8.4.5.3 *Комплектную поверку (прямые измерения)* ИК напряжения постоянного тока, соответствующего значениям температуры, с оценкой МХ по результатам сквозной градуировки ИК проводить в следующей последовательности:
- подключить ИК температуры без термоэлектрического преобразователя к РЭ (калибратор TRX-IIR) по схеме рисунка 7;
 - провести градуировку ИК по методике раздела 6.4.2.1;
- оценить МХ ИК напряжения постоянного тока, соответствующего значениям температуры, в соответствии с алгоритмом, приведенным в разделе 9 настоящей методики.
- 8.4.5.4 Результаты поверки ИК температуры с термоэлектрическими преобразователями XA, ПР и напряжения постоянного тока, соответствующего значениям температуры, измеряемой с помощью термоэлектрических преобразователей XK, считать положительными, если значения погрешностей ИК находятся в пределах, указанных в таблице 1 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

8.4.6 Поверка ИК расхода топлива

- 8.4.6.1 *Комплектную поверку (косвенные измерения)* ИК расхода топлива с оценкой МХ ИК по МХ элементов ИК проводить в следующей последовательности:
- провести поверку турбинных преобразователей расхода ТДР (ТПР) в аккредитованном поверочном органе;
 - провести поверку ареометра АНТ-1 по методике МИ 1914-88;
- отсоединить электрический кабель датчика ТПР (ТДР) от ИК и с помощью жгутапереходника подключить к ИК РЭ (генератор сигналов Г3-110) по схеме рисунка 8;
- провести градуировку ИК по методике, приведенной в разделе 8.4.2.1, устанавливая с помощью РЭ контрольные значения сигнала синусоидальной формы амплитудой 1,0 В с частотой $50, 100, 150, 200, 250, 300, 350, 400, 450, 500 <math>\Gamma$ ц;
- оценить МХ ИК расхода топлива в соответствии с алгоритмом, приведенном в разделе 9 настоящей методики.
- 8.4.6.2 Результаты поверки ИК расхода топлива считать положительными, если значения погрешностей ИК находятся в пределах, указанных в таблице 1 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

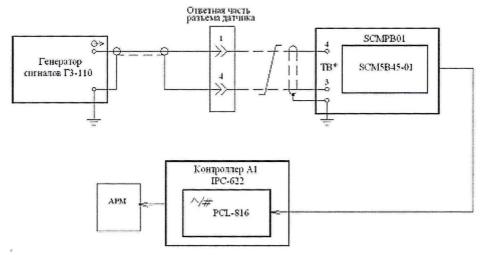


Рисунок 8 — Схема градуировки ИК частоты электрических сигналов датчиков ТПР (ТДР)

9 Обработка результатов поверки

Результаты измерений, полученные при поверке ИК, обрабатывают в следующем порядке.

9.1 Найти и и исключить грубые промахи

Грубые промахи устраняются программным способом, для чего проводится ранжирование результатов наблюдений (отсчетов) каждого измерения с последующим исключением 10% от минимального и максимального значений наблюдений.

В случае, когда факт появления грубого промаха установлен достоверно, допускается его отбраковка оператором на стадии просмотра результатов наблюдений при градуировке ИК.

9.2 Определить индивидуальную функцию преобразования ИК

Индивидуальную функцию преобразования ИК ИС определять по результатам градуировки в виде обратной функции, т.е. как зависимость значений величины x на входе ИК от значений y на его выходе. Эту функцию представляют либо в виде степенного полинома, если нелинейность функции такова, что с достаточной точностью можно ограничиться аппроксимирующим полиномом, не выше 4-й степени (формулы (1) и (2)):

$$x = a_0 + a_1 y + ... + a_n y^n , \qquad (1)$$

либо кусочно-линейной зависимостью

$$x = x_{\kappa} + q_{\rm sf\kappa} \cdot (y - y_{\kappa}) , \qquad (2)$$

где $a_0, a_1, ..., a_n$ – коэффициенты аппроксимирующей функции преобразования, определяемые методом наименьших квадратов;

 x_{κ} - эталонное значение входной величины на к $_{-\text{той}}$ ступени;

q _{sfк} - цена единицы наименьшего разряда кода на к_{-той} ступени;

 y_{κ} - среднее значение результатов наблюдений выходной величины при градуировке на κ -той ступени.

Значения y_{κ} и q $_{\rm sf\kappa}$ определить по формулам (3) и (4):

$$y_{\kappa} = \sum_{i} \sum_{n} (y'_{ikn} + y''_{ikn}) / 2 \cdot l \cdot m, \qquad (3)$$

$$q_{sf_{\kappa}} = \frac{x_{\kappa+1} - x_{\kappa}}{y_{\kappa+1} - y_{\kappa}} \tag{4}$$

- 9.3 Определить характеристики погрешностей ИК
- 9.3.1 Характеристики погрешности ИК при комплектный способе поверки (прямые измерения) с оценкой МХ ИК по результатам сквозной градуировки ИК
- 9.3.1.1 Неисключенная систематическая составляющая абсолютной погрешности на каждой к $_{-moi}$ контрольной точке

Доверительные границы НСП при Р=0,95 определять по формуле (5):

$$\tilde{\Delta}_{osk} = 1.1 \sqrt{\tilde{\Delta}_{oska}^2 + \Delta_{p_9}^2} , \qquad (5)$$

где Δ_{p_3} - погрешность рабочего эталона;

 $\widetilde{\Delta}_{oska}$ - НСП ИК, обусловленная погрешностью аппроксимации при задании индивидуальной функции преобразования в виде степенного полинома (1):

$$\widetilde{\Delta}_{oska} = \left| \left(a_o + a_1 y_k + \dots + a_n y_k^n \right) - x_k \right| . \tag{6}$$

При задании индивидуальной функции преобразования в виде кусочно-линейной зависимости (2)

 $\widetilde{\Delta}_{oska} = 0 \tag{7}$

9.3.1.2 Случайная составляющая абсолютной погрешности на каждой к_{-той} контрольной точке

Доверительные границы случайной составляющей абсолютной погрешности при P=0,95 определять по формуле (8):

$$\widetilde{\Delta}_{o\kappa} = \tau \cdot \sqrt{\widetilde{\sigma}^2_{[\dot{\Delta}o\kappa]} + \frac{\widetilde{H}_{o\kappa}^2}{12}}, \tag{8}$$

где τ - коэффициент Стьюдента-Фишера, зависящий от доверительной вероятности (P) и числа степеней свободы 2ml-1. Таблица значений τ при P = 0,95 приведена в приложении Б; $\tilde{\sigma}_{\left[\dot{\Delta}_{OK}\right]}$ - среднее квадратическое отклонение случайной составляющей абсолютной погрешности на каждой к-той контрольной точке, определяемое по формуле (9)

$$\widetilde{\sigma}_{\left[\dot{\Delta}_{O\kappa}\right]} = \sqrt{\frac{\sum_{n} \sum_{i} \left(x'_{ikn} - x'_{\kappa}\right)^{2} + \sum_{n} \sum_{i} \left(x''_{ikn} - x'_{\kappa}\right)^{2}}{2ml - 1}},$$
(9)

 $x'_{i\kappa\kappa}$, x''_{ikn} - приведенные по входу значения результатов наблюдений на к-той ступени при прямом и обратном ходе градуировки соответственно;

 $x_{\kappa}^{'}$, $x_{\kappa}^{"}$ - приведенные по входу средние значения результатов наблюдений на к-той ступени при прямом и обратном ходе градуировки соответственно;

$$x_{\kappa}' = \frac{1}{ml} \sum_{n} \sum_{i} x_{ikn}',$$

$$x_{\kappa}'' = \frac{1}{ml} \sum_{n} \sum_{i} x_{ikn}'';$$
(10)

 $\widetilde{H}_{o\kappa}$ - абсолютное значение вариации,

$$\widetilde{H}_{o\kappa} = \left| x_{\kappa}^{'} - x_{\kappa}^{"} \right|. \tag{11}$$

9.3.1.3 Абсолютная погрешность ИК на каждой к-_{той} контрольной точке Доверительные границы абсолютной погрешности ИК при Р=0,95 определять по формуле (12):

$$\widetilde{\Delta}_{o\kappa a \delta c} = K \cdot (\widetilde{\Delta}_{osk} + \widetilde{\Delta}_{o\kappa}) \qquad \text{при } 8 > (\widetilde{\Delta}_{os\kappa} \cdot \tau / \widetilde{\Delta}_{o\kappa}) > 0.8 \,,$$

$$\widetilde{\Delta}_{o\kappa a \delta c} = \widetilde{\Delta}_{osk} \qquad \text{при } (\widetilde{\Delta}_{os\kappa} \cdot \tau / \widetilde{\Delta}_{o\kappa}) \ge 8 \,,$$

$$\widetilde{\Delta}_{o\kappa a \delta c} = \widetilde{\Delta}_{o\kappa} \qquad \text{при } (\widetilde{\Delta}_{os\kappa} \cdot \tau / \widetilde{\Delta}_{o\kappa}) \le 0.8 \,.$$

$$(12)$$

Коэффициент K определять в зависимости от отношения $\widetilde{\Delta}_{osk} \cdot \tau / \widetilde{\Delta}_{os}$ в соответствии с таблицей 3.

Таблица 3

$\widetilde{\Delta}_{_{\!O\!S\!K}}\!\!\cdot\! au/\widetilde{\Delta}_{_{\!O\!K}}$	0,5	0,75	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0
К	0,81	0,77	0,74	0,71	0,73	0,76	0,78	0,79	0,80	0,81

9.3.1.4 Абсолютную погрешность ИК определять по формуле (13):

$$\widetilde{\Delta}_{o} = \max(\widetilde{\Delta}_{o\kappa a \delta c}) \quad . \tag{13}$$

- 9.3.2 Характеристики погрешности ИК при комплектной поверке с оценкой $M\!X$ ИК по $M\!X$ элементов системы
- 9.3.2.1 Абсолютную погрешность ИК температуры с термометрами сопротивления определять по формуле (14):

$$\tilde{\Delta}_o = 1.1 \sqrt{\tilde{\Delta}_{oHK}^2 + \Delta_{TC}^2} \qquad , \tag{14}$$

где $\tilde{\Delta}_{out}$ - абсолютная погрешность ИК без ПП,

 Δ_{TC} – погрешность термометра сопротивления по ГОСТ Р 8.624-2006.

9.3.2.2 Абсолютную погрешность ИК температуры с термоэлектрическими преобразователями ХА, ПР, ХК определять по формуле (15):

$$\tilde{\Delta}_o = 1.1 \sqrt{\tilde{\Delta}_{oMK}^2 + \Delta_{TII}^2} , \qquad (15)$$

где $\tilde{\Delta}_{osH\!K}$ - абсолютная погрешность ИК без ПП;

 $\Delta_{T\Pi}$ – погрешность термоэлектрического преобразователя по ГОСТ Р 8.585-2001;

9.3.2.2 Абсолютную погрешность ИК расхода топлива определять по формуле (16):

$$\tilde{\Delta}_o = 1.1 \cdot G_m \cdot \sqrt{(\Delta(F)/F)^2 + (\Delta Q/Q)^2 + (\Delta(\rho)/\rho)^2 + \delta_{necm}^2 + \delta_{po}^2} \quad , \tag{16}$$

где: Gm – измеренное значение массового расхода топлива;

 $\Delta(F)/F$ - относительное значение погрешности ИК без ПП (ТПР, ТДР);

 $\Delta(Q)/Q$ - относительное значение погрешности ПП. Значение погрешности $\Delta(Q)/Q$ берется из протоколов поверки ТПР (ТДР) на эталонной (образцовой) установке;

 $\delta_{_{necm}}$ - относительное значение дополнительной погрешности ПП из-за временной нестабиьности. За межповерочный интервал один год значение $\delta_{_{necm}}$ = 0,3 %;

 δ_{p_2} - относительное значение погрешности рабочего эталона поверки ТПР (ТДР);

 $\Delta(\rho)/\rho$ - относительное значение погрешности измерения плотности топлива. Значение погрешности $\Delta(\rho)/\rho$ определять по формуле (17)

$$\Delta(\rho)/\rho = ((\delta_{\rho})^2 + (\gamma \cdot \Delta_{\iota}/\rho)^2)^{0.5}, \tag{17}$$

где: δρ- погрешность измерения плотности топлива ареометром (для ареометра АНТ-1 $\delta \rho$ =0,0006); γ - температурный коэффициент плотности топлива; топлива при 20°C;

 ρ - номинальная плотность топлива при 20°С;

 Δt – абсолютная погрешность измерения температуры топлива с помощью термометра сопротивления.

9.3.4 Приведенную погрешность ИК определять по формулам (18)

$$\widetilde{\gamma}_{o} = \frac{\widetilde{\Delta}_{o}}{BII} \cdot 100\% \qquad ; \tag{18}$$

10 Оформление результатов поверки

- 10.1 Результаты поверки занести в Протокол (приложение В).
- 10.2 При положительных результатах поверки оформляется свидетельство о поверке.

Система измерительная СИ-КС считается прошедшей поверку с положительными результатами при выполнении следующих требований:

- ИС функционирует нормально, неисправности и дефекты, препятствующие выполнению операций поверки и последующей эксплуатации, отсутствуют;
- основные технические характеристики ИС соответствуют РЭ и другим нормативным документам;
- метрологические характеристики соответствуют требованиям настоящей методики поверки.
- 10.3 При отрицательных результатах поверки применение ИС запрещается и оформляется извещение о непригодности с указанием причин.

Начальник отдела ГЦИ СИ ФГУ
«32 ГНИИИ Минобороны России»

Заместитель начальника отдела-начальник лаборатории
С.С. Алимов

С.С. Алимов

Приложение А (обязательное)

Технические и метрологические характеристики измерительной системы СИ-КС

CI	1-КС	
		Пределы
Наименование измеряемого параметра	Диапазон измерений	допускаемой
		погрешности
ИК давления и силы постоянного тока,	соответствующей значени	ям давления
Атмосферное давление воздуха	от 96 до 106,7 кПа	± 67 Па
1 1	(от 720 до 800 мм рт. ст.)	(± 0,5 мм рт.ст.)
(количество ИК - 1)		(= 0,0 mm p11011)
Избыточное статическое давление воздуха		
(количество ИК – 1)	от 0 до 0,392 МПа	
,	(от 0 до $4,0 \text{ кгс/см}^2$)	
(количество ИК – 1)	от 0 до 0,471 МПа	1,0 % от верхнего
	(от 0 до 4,8 кгс/см ²)	предела измере-
(количество ИК - 1)	от 0 до 0,490 МПа	ний (ВП)
	(от 0 до 5,0 кгс/см ²)	, ,
(количество ИК – 1)	от 0 до 0,588 МПа	
,	(от 0 до 6,0 кгс/см ²)	
Избыточное полное давление воздуха	от 0 до 0,539 МПа	1.0.0/ DT
(количество ИК – 1)	(от 0 до 5,5 кгс/см ²)	1,0~% от ВП
Перепад статического давления воздуха	от 0 до 0,059 МПа	100/ 27
(количество ИК – 3)	(от 0 до 0,6 кгс/см ²)	1,0~% от ВП
Сила постоянного тока, соответствующая	от 4 до 20 мА	
значениям давления в диапазоне от 0		
до 8,0 МПа		0,2~% от ВП
(количество ИК – 30)		
ИК температуры с термоэлектрическими	преобразователями ХА. ПР	и напряжения по-
стоянного тока, соответствующего значе		_
	преобразователей ХК	
	ометрами сопротивления	
Температура воздуха (газа), измеряемая тер-		
моэлектрическими преобразователями ХА		
(количество ИК – 10)	от 273 до 1373 К	
	(от 0 до 1100 °C)	1,0 % от ВП
(количество ИК – 1)	от 273 до 973 К	2,0 / 0 01 211
-/	(от 0 до 700 °C)	
(количество ИК – 13)	от 273 до 873 К	
(10)111011011111111)	(от 0 до 600 °C)	
Температура воздуха (газа), измеряемая тер-	(2)	
моэлектрическими преобразователями ПР	от 1273 до 2073 К	
(количество ИК – 10)	(от 1000 до 1800 °C)	$1,0~\%$ от В Π
Напряжение постоянного тока, соответст-		
вующее значениям температуры, измеряемой		
с помощью термоэлектрических преобразова-		
телей ХК:		
от 273 до 423 К (количество ИК – 6)	от 0 до 10 мВ	0,2~% от ВП
от 273 до 873 К (количество ИК – 4)	от 0 до 50 мВ	-,- / · · · · · · · · · · · · · · · · · ·
Температура рабочих жидкостей, измеряемая		
термометрами сопротивления	от 223 до 373 К	
replacification of position in a	01 223 A0 373 K	

Наименование измеряемого параметра	Диапазон измерений	Пределы допускаемой
Паименование измеряемого параметра	дианазон измерении	погрешности
(количество ИК – 2)	(от минус 50 до 100 °C)	1,0 % от ВП
Температура рабочих жидкостей, воздуха (га-		
за), измеряемая термометрами сопротивления		
(количество ИК – 15)	от 273 до 373 К	1,0 % от ВП
	(от 0 до 100 °C)	
ИК расход	да топлива	
Массовый расход топлива		
(количество ИК – 2)	от 85 до 320 кг/ч	$0,7~\%$ от $\mathrm{B\Pi}$
(количество ИК – 2)	от 340 до 1500 кг/ч	

Приложение Б (справочное)

Значения коэффициента Стьюдента-Фишера в зависимости от числа степеней свободы при доверительной вероятности P= 0,95

Число степеней	Доверительная	Число степеней	Доверительная ве-
свободы			роятность Р=0,95
2ml-1	P=0,95	2ml-1	
1	12,706	18	2,103
2	4,303	19	2,093
3	3,182	20	2,086
4	2,776	21	2,080
5	2,571	22	2,074
6	2,447	23	2,069
7	2,365	24	2,064
8	2,306	25	2,060
9	2,262	26	2,056
10	2,228	27	2,052
11	2,201	28	2,048
12	2,179	29	2,045
13	2,160	30	2,042
14	2,145	40	2,021
15	2,131	60	2,000
16	2,120	120	1,980
17	2,110	-	

Приложение В (справочное)

Протокол №

определения погрешностей измерений ИК системы измерительной СИ- КС стенда № 5 для испытаний газотурбинных двигателей 1 Дата испытаний..... 2 Средства испытаний 3 Условия испытаний Температура окружающего воздуха, °С..... Атмосферное давление, мм рт. ст. Влажность, %..... 4 Документ, в соответствии с которым проводилась испытания методика поверки 279.01.62.000 МП 5 Результаты экспериментальных исследований 5.1 Внешний осмотр 5.2 Результаты опробования 5.3 Результаты метрологических исследований Рабочие материалы, содержащие данные по градуировкам ИК и их обработке представлены в рабочей папке №...... Результаты метрологических исследований системы измерительной СИ - КС представлены

Условия исследования:

в Таблице.

- число ступеней нагружения	p =
- число циклов нагружения	1=
- число опросов на точке	m =

Расчет суммарной погрешности проводятся по формулам методики поверки $279.01.62.000~\mathrm{M\Pi}$ «Система измерительная СИ- КС. Методика поверки».

Таблица

	Наименова-	Диапазон	Тип	Тип вторич-	Наибольшее зна-	Пределы допус-
No	ние ИК	измерения	датчика	ной аппара-	чение -суммарной	каемой погреш-
ПП				туры	погрешности	ности ИК

6 Выводы	
7 Заключение	
От ФГУ «	32 ГНИИИ Минобороны России»ОАО «УМПО»
	()
Подпись	Фамилия И.О.
	От ОАО «УМПО»
	()
Подпись	Фамилия И.О.