# **УТВЕРЖДЕНО**

приказом Федерального агентства по техническому регулированию и метрологии от «01» марта 2021 г. №197

Регистрационный № 80937-21

Лист № 1 Всего листов 8

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Малодербетовская солнечная электростанция (2 очередь)

#### Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Малодербетовская солнечная электростанция (2 очередь) (далее по тексту — АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

## Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную измерительную систему с централизованным управлением и распределённой функцией измерения, состоящую из восьми измерительных каналов (далее по тексту – ИК).

ИК АИИС КУЭ включают в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее по тексту — ИИК), которые включают в себя измерительные трансформаторы тока (далее по тексту — ТТ), трансформаторы напряжения (далее по тексту — ТН) и счетчики активной и реактивной электроэнергии (далее по тексту — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (далее по тексту — ИВК), включающий в себя сервер баз данных (далее по тексту — БД) с установленным серверным программным обеспечением на базе закрытой облачной системы, устройство синхронизации системного времени (далее по тексту — УССВ), автоматизированные рабочие места персонала (далее по тексту - APM), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (не реже 1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений Коммерческому оператору торговой системы оптового рынка электроэнергии и мощности и в организации-участники оптового рынка электроэнергии и мощности;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);
- передачу журналов событий счетчиков в базу данных ИВК.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на входы счетчика электрической энергии, где производится измерение мгновенных и средних значений активной и реактивной мощности. На основании средних значений мощности измеряются приращения электроэнергии за интервал времени 30 минут.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы сервера ИВК, где производится сбор и хранение результатов измерений.

Сервер автоматически проводит сбор результатов измерений и состояний средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

На верхнем втором уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Один раз в сутки сервер ИВК автоматически формирует файл с результатами измерений в XML-формате и передает его средствами электронной почты во внешние организации. Передача файла с результатами измерений в XML-формате, подписанного электронной подписью субъекта оптового рынка, в программно-аппаратный комплекс (ПАК) АО «АТС» производится с автоматизированного рабочего места субъекта оптового рынка. Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (далее по тексту — СОЕВ), включающей в себя источнике сигналов эталонного времени на базе ГЛОНАСС/GPS-приемника, входящего в состав УССВ типа УСВ-3, регистрационный номер в Федеральном информационном фонде №64242-16, а также часы сервера БД и счетчиков. Шкала времени сервера БД синхронизирована с метками времени приемника, сличение один раз в секунду, синхронизация осуществляется при расхождение часов приемника и сервера БД более чем на  $\pm 1$  с. Сличение времени часов счетчиков с часами сервера БД происходит не реже одного раза в сутки, корректировка времени часов счетчиков происходит при расхождении со временем часов сервера БД более чем на  $\pm 2$  с.

Журналы событий сервера БД и счетчиков отражают факты событий коррекции шкалы времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции шкалы времени, на которую было скорректировано устройство.

# Программное обеспечение

В состав программного обеспечения (далее по тексту – ПО) АИИС КУЭ входят ПО счетчиков, ПО сервера ИВК, ПО АРМ на основе пакета программ «Энергосфера». Идентификационные данные ПО ПК «Энергосфера», установленного в ИВК, указаны в таблице 1.

Таблица 1 – Идентификационные данные ПО

| Идентификационные данные (признаки)             | Значение                         |  |  |
|-------------------------------------------------|----------------------------------|--|--|
| Идентификационное наименование ПО               | ПК «Энергосфера»                 |  |  |
|                                                 | Библиотека pso_metr.dll          |  |  |
| Номер версии (идентификационный номер) ПО       | не менее 1.1.1.1                 |  |  |
| Цифровой идентификатор ПО                       | cbeb6f6ca69318bed976e08a2bb7814b |  |  |
| Алгоритм вычисления цифрового идентификатора ПО | MD5                              |  |  |

Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014.

# Метрологические и технические характеристики

Состав ИК АИИС КУЭ и их метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики.

| ИК            |                                                                                                                        | Измерительные компоненты                               |                                                  |                                                   |                         | Вид                               | Метрологические<br>характеристики ИК |      |
|---------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------|-----------------------------------|--------------------------------------|------|
| Номер ]       | Наименование ИК                                                                                                        | именование ИК ТТ ТН Счетчик Счетчик                    |                                                  | электроэне<br>ргии                                | Основная погрешность, % | Погрешность в рабочих условиях, % |                                      |      |
| 1             | 2                                                                                                                      | 3                                                      | 4                                                | 5                                                 | 6                       | 7                                 | 8                                    | 9    |
| 1             | Малодербетовская<br>СЭС, ЗРУ-10 кВ, 3                                                                                  | ТЛО-10<br>Кл. т. 0,5S<br>Ктт 1200/5                    | ЗНОЛП-ЭК-10<br>Кл. т. 0,5<br>Ктн 10000/√3:100/√3 | СЭТ-4ТМ.03М<br>Кл. т. 0,2S/0,5                    |                         | активная                          | ±1,1                                 | ±2,8 |
|               | СШ 10 кВ, Яч. 303                                                                                                      | Рег. № 25433-11                                        | Рег. № 68841-17                                  | Рег. № 36697-17                                   |                         | реактивная                        | ±2,6                                 | ±5,3 |
| 2             | CIII 10 vR 9u 403   KTT 1200/5   KTH 10000/\(\sigma 3.6607.17 \)                                                       |                                                        | активная                                         | ±1,1                                              | ±2,8                    |                                   |                                      |      |
|               |                                                                                                                        |                                                        |                                                  | · · · · · · · · · · · · · · · · · · ·             | HPE DL380               | реактивная                        | ±2,6                                 | ±5,3 |
| 3             | Малодербетовская                                                                                                       | ероетовская $K_{T,T,0.5}$ $K_{T,T,0.5}$ $C-31-41M.03M$ | Gen 10 активная                                  | ±1,1                                              | ±2,8                    |                                   |                                      |      |
| 3             | СЭС, ЗРУ-10 кВ, 3<br>СШ 10 кВ, Яч. 306 Ктт 600/5<br>Рег. № 25433-11 Рег. № 68841-17 Кл. т. 0,2S/0,5<br>Рег. № 36697-17 | УСВ-3<br>Рег.                                          | реактивная                                       | ±2,6                                              | ±5,3                    |                                   |                                      |      |
| 4             | Малодербетовская<br>СЭС, ЗРУ-10 кВ, 3<br>СШ 10 кВ, Яч. 305                                                             | ТЛО-10<br>Кл. т. 0,5S                                  | ЗНОЛП-ЭК-10<br>Кл. т. 0,5                        | СЭТ-4ТМ.03М<br>Кл. т. 0,2S/0,5<br>Рег. № 36697-17 | №64242-16               | активная                          | ±1,1                                 | ±2,8 |
| 4             |                                                                                                                        | Ктт 600/5<br>Рег. № 25433-11                           | Ктн 10000/√3:100/√3<br>Рег. № 68841-17           |                                                   |                         | реактивная                        | ±2,6                                 | ±5,3 |
| 5 СЭС, ЗРУ-10 | Малодербетовская                                                                                                       | ТЛО-10<br>Кл. т. 0,5S                                  | ЗНОЛП-ЭК-10<br>Кл. т. 0,5                        | СЭТ-4ТМ.03М<br>Кл. т. 0,2S/0,5<br>Рег. № 36697-17 |                         | активная                          | ±1,1                                 | ±2,8 |
|               | СЭС, ЗРУ-10 кВ, 4<br>СШ 10 кВ, Яч. 405                                                                                 | Ктт 600/5<br>Рег. № 25433-11                           | Ктн 10000/√3:100/√3<br>Рег. № 68841-17           |                                                   |                         | реактивная                        | ±2,6                                 | ±5,3 |

# Продолжение таблицы А.1

| 1                                    | 2                                      | 3                            | 4                                      | 5                                  | 6             | 7          | 8    | 9    |
|--------------------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------------|---------------|------------|------|------|
| 6                                    | Малодербетовская<br>СЭС, ЗРУ-10 кВ, 4  | ТЛО-10<br>Кл. т. 0,5S        | ЗНОЛП-ЭК-10<br>Кл. т. 0,5              | СЭТ-4ТМ.03М<br>Кл. т. 0,2S/0,5     |               | активная   | ±1,1 | ±2,8 |
|                                      | СШ 10 кВ, Яч. 406                      | Ктт 600/5<br>Рег. № 25433-11 | Ктн 10000/√3:100/√3<br>Рег. № 68841-17 | Рег. № 36697-17                    | HPE DL380     | реактивная | ±2,6 | ±5,3 |
| 7                                    | Малодербетовская<br>СЭС, ЗРУ-10 кВ, 1  | ТЛО-10<br>Кл. т. 0,5S        | ЗНОЛП-ЭК-10<br>Кл. т. 0,5              | СЭТ-4ТМ.03М<br>Кл. т. 0,2S/0,5     | Gen 10        | активная   | ±1,1 | ±2,8 |
| /                                    | СЫС, 31 9-10 кВ, 1                     | Ктт 600/5<br>Рег. № 25433-11 | Ктн 10000/√3:100/√3<br>Рег. № 68841-17 | Rл. 1. 0,25/0,3<br>Рег. № 36697-17 | УСВ-3<br>Рег. | реактивная | ±2,6 | ±5,3 |
| 8                                    | Малодербетовская                       | ТЛО-10<br>Кл. т. 0,5S        | ЗНОЛП-ЭК-10<br>Кл. т. 0,5              | CЭT-4TM.03M                        | №64242-16     | активная   | ±1,1 | ±2,8 |
| _                                    | СЭС, ЗРУ-10 кВ, 2<br>СШ 10 кВ, Яч. 205 | Ктт 600/5<br>Рег. № 25433-11 | Ктн 10000/√3:100/√3<br>Рег. № 68841-17 | Кл. т. 0,2S/0,5<br>Рег. № 36697-17 |               | реактивная | ±2,6 | ±5,3 |
| Пределы допускаемой погрешности СОЕВ |                                        |                              |                                        |                                    |               | ±5 c       |      |      |

### Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана  $\cos \varphi = 0.8$  инд,  $I=0.02 \cdot I$ ном и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 8 от минус 40 °C до +60 °C.
- 4. Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформаторов напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 5. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, УССВ на аналогичные утвержденного типа, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 6. Замена оформляется техническим актом в установленном на предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК.

| Гаолица 3 – Основные технические характеристики ИК.      |                    |
|----------------------------------------------------------|--------------------|
| Наименование характеристики                              | Значение           |
| Количество измерительных каналов                         | 8                  |
| Нормальные условия:                                      |                    |
| параметры сети:                                          |                    |
| - напряжение, % от $U_{\text{ном}}$                      | от 99 до 101       |
| - Tok, $\%$ ot $I_{\text{hom}}$                          | от 100 до 120      |
| - частота, Гц                                            | от 49,85 до 50,15  |
| - коэффициент мощности соsф                              | 0,9                |
| - температура окружающей среды, °С                       | от +21 до +25      |
| Условия эксплуатации:                                    |                    |
| параметры сети:                                          |                    |
| - напряжение, % от $U_{\text{ном}}$                      | от 90 до 110       |
| - Tok, $\%$ ot $I_{\text{hom}}$                          | от 2 до 120        |
| - коэффициент мощности                                   | от 0,5 инд. до 1,0 |
| - частота, Гц                                            | от 49,6 до 50,4    |
| - температура окружающей среды для TT и TH, °C           | от -40 до +70      |
| - температура окружающей среды в месте расположения      |                    |
| электросчетчиков, °С:                                    | от -40 до +60      |
| - температура окружающей среды в месте расположения      |                    |
| сервера, °С                                              | от +10 до +30      |
| Надежность применяемых в АИИС КУЭ компонентов:           |                    |
| Электросчетчики:                                         |                    |
| - среднее время наработки на отказ, ч, не менее:         | 220000             |
| - среднее время восстановления работоспособности, ч      | 2                  |
| УССВ:                                                    |                    |
| - среднее время наработки на отказ, ч, не менее:         | 45000              |
| - среднее время восстановления работоспособности, ч      | 2                  |
| Сервер:                                                  |                    |
| - среднее время наработки на отказ, ч, не менее          | 100000             |
| - среднее время восстановления работоспособности, ч      | 1                  |
| Глубина хранения информации                              |                    |
| Электросчетчики:                                         |                    |
| - тридцатиминутный профиль нагрузки в двух направлениях, |                    |
| сутки, не менее                                          | 114                |
| - при отключении питания, лет, не менее                  | 40                 |
| Сервер:                                                  |                    |
| - хранение результатов измерений и информации состояний  |                    |
| средств измерений, лет, не менее                         | 3,5                |

# Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии по электронной почте.

# В журналах событий фиксируются факты:

- журнал счётчика:
  - связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;

- коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
- формирование обобщенного события (или по каждому факту) по результатам автоматической самодиагностики;
- отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
- перерывы питания электросчетчика с фиксацией времени пропадания и восстановления.
- журнал сервера:
  - даты начала регистрации измерений;
  - перерывы электропитания;
  - программные и аппаратные перезапуски;
  - изменение значений результатов измерений;
  - изменение коэффициентов измерительных трансформаторов тока и напряжения;
  - отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени;
  - факт и величина синхронизации (коррекции) времени;
  - переход на летнее/зимнее время;
  - замена счетчика;
  - полученные «Журналы событий» ИИК.

#### Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
  - электросчётчика;
  - промежуточных клеммников вторичных цепей напряжения;
  - испытательной коробки;
  - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
  - электросчетчика;
  - сервера.

### Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

## Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

## Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

#### Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему АИИС КУЭ Малодербетовская солнечная электростанция (2 очередь) типографским способом.

#### Комплектность средства измерений

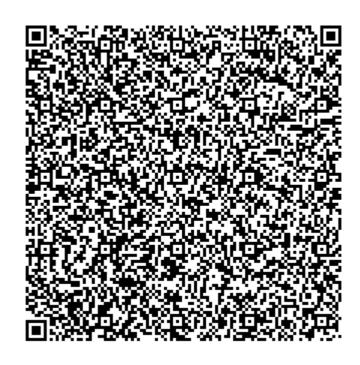
В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

| Наименование                                      | Тип/ Обозначение         | Количество, шт./ экз. |
|---------------------------------------------------|--------------------------|-----------------------|
| Трансформатор тока                                | ТЛО-10                   | 24                    |
| Трансформатор напряжения                          | ЗНОЛП-ЭК-10              | 12                    |
| Счётчик электрической энергии многофункциональный | СЭТ-4ТМ.03М              | 8                     |
| Устройство синхронизации<br>системного времени    | УСВ-3                    | 1                     |
| Сервер                                            | HPE DL380 Gen10          | 1                     |
| Программное обеспечение                           | ПК «Энергосфера»         | 1                     |
| Методика поверки                                  | МП СМО-1910-2020         | 1                     |
| Паспорт-Формуляр                                  | РЭСС.411711.АИИС.7701 ПФ | 1                     |

### Сведения о методиках (методах) измерений


приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Малодербетовская солнечная электростанция (2 очередь), аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

## Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

