УТВЕРЖДАЮ

Заместитель директора ФГУП «ВНИИОФИ» И.С. Филимонов «20» 10 2020 г

Государственная система обеспечения единства измерений Анализаторы автоматические биохимические ДДС-240 МЕТОДИКА ПОВЕРКИ МП 041.Д4-20

-1 ---- i --- i

Главный метролог ФГУП «ВНИИОФИ» С.Н. Негода « 19 » 10 _ 2020 г

Главный научный сотрудник ФГУП «ВНИИОФИ»

В.Н. Крутиков 2020 г

Введение

Настоящая методика поверки распространяется на анализаторы автоматические биохимические ДДС-240 (далее – анализаторы), изготовитель АО «ДИАКОН-ДС», г. Пущино.

Анализаторы предназначены для измерения оптической плотности пробы при проведении биохимических и турбидиметрических анализов в рамках диагностики in vitro, в т.ч. при определении неклеточных компонентов в клиническом образце (моче, сыворотке, плазме крови или спинномозговой жидкости). Настоящая методика поверки устанавливает порядок, методы и средства проведения их первичной и периодических поверок.

Интервал между поверками – 1 год.

1 Операции

1.1 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

1.2 При проведении поверки должны быть выполнены операции, перечисленные в таблице 1.

	Номер пункта	Проведение операции при		
Наименование операции	документа	первичной	периодической	
	по поверке	поверке	поверке	
Внешний осмотр	5.1	да	да	
Опробование анализатора	5.2	да	да	
Проверка программного обеспечения	5.3	да	да	
Определение (контроль)	5.4	ла	да	
метрологических характеристик	5.4	Да		
Проверка диапазона измерений	541	ла	да	
оптической плотности	5.7.1	Да		
Определение абсолютной погрешности	542	па	да	
измерений оптической плотности	5.4.2	да		

Таблица 1 – Операции поверки

1.3 При получение отрицательных результатов, при проведении той или иной операции, поверка прекращается.

2 Средства поверки

2.1 При проведении поверки должны применяться средства, указанные в таблице 2.

Таблица 2 – Средства поверки анализатора

 $a_1 = l \rightarrow 1$

Номер пункта	Наименование средства поверки: номер документа,					
методики	регламентирующего технические требования к средству;					
поверки	основные технические характеристики					
	ГСО 11292-2019 Стандартные образцы содержания калия, кальция,					
	магния в сыворотке крови (комплект).					
	Интервал допускаемых аттестованных значений молярной концентра-					
	ции калия от 3,0 до 6,5 ммоль/дм ³ ,					
	Интервал допускаемых аттестованных значений молярной концентра-					
	ции кальция от 1,5 до 3,5 ммоль/дм ³ ,					
	Интервал допускаемых аттестованных значений молярной концентра-					
	ции магния от 1,5 до 3,5 ммоль/дм ³ ,					
	Допускаемое значение относительной расширенной неопределенности					
	аттестованного значения при k=2, 0,8 %.					
5.2	ГСО 9913-2011 Стандартный образец молярной концентрации холесте-					
5.2	рина в крови.					
	Интервал допускаемых аттестованных значений молярной концентра-					
	ция холестерина от 3,5 до 7,0 ммоль/л,					
	Границы относительной погрешности аттестованных значений при					
	(P=0,95), ± 7 %					
	Вспомогательное оборудование:					
	- наборы реагентов для определения концентрации кальция, магния, хо-					
	лестерина, предназначенных для биохимических анализаторов*;					
	- вода дистиллированная по ГОСТ 6709-72;					
	- Кюветы пластиковые в сборе из комплекта поставки анализатора (9					
	сегментов)*					
	Рабочий эталон 1-го разряда (в проходящем свете) согласно Государ-					
	ственной поверочной схемы для средств измерений оптической плотно-					
	сти, утверждённой приказом Росстандарта от 28.09.2018 № 2085** (да-					
	лее по тексту – рабочий эталон).					
	Диапазон зональной диффузной оптической плотности от 0,01 до 4,2 Б;					
	Допускаемые аосолютные погрешности значении оптической плотно-					
	CIN: P THETEROUS OF 0.010 TO 0.400 E ± 0.006 E:					
	- B JUANASONE OF 0,010 ± 0.000 B ± 0.000 B,					
	- B JHAHASOHE CB. $2,000 \text{ Jo} 2,000 \text{ B} \pm 0,03 \text{ B},$					
54	- B Analiasone eB. 2,000 do 4,200 B ± 0,04 B.					
5.4	Вспомогательное оборудование:					
	- вола листиллированная по ГОСТ 6709-72					
	- Кюветы пластиковые в сборе из комплекта поставки анализатора (9					
	сегментов)*:					
	- Дозатор механический одноканальный BIOHIT (далее – дозатор), ре-					
	гистрационный № 36152-07.					
	Объем дозирования от 100 до 1000 мкл,					
	Предел допускаемого относительного отклонения среднего арифмети-					
	ческого значения фактического объема дозы от номинального					
۵. ا	от ± 2,0 до ± 0,6 %.					
* предоставляк	отся заказчиком					
** рабочий эта	лон должен представлять собой жидкость (например, водный раствор ни-					
грозина)						

2.2 Средства поверки, указанные в таблице 2, должны быть аттестованы (поверены) в установленном порядке.

2.3 Допускается применение других средств, не приведенных в таблице 2, но обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

3 Требования к квалификации поверителей и требования безопасности

3.1 К проведению поверки допускаются лица:

- прошедшие обучение на право проведения поверки по требуемому виду измерений;

 изучившие настоящую методику поверки и эксплуатационную документацию на анализаторы;

- соблюдающие требования, установленные правилами по охране труда при эксплуатации электроустановок, согласно приказу Министерства труда и социальной защиты № 328н от 24.07.13г.

3.2 При проведении поверки должны быть соблюдены требования безопасности, приведенные в руководстве по эксплуатации анализаторов.

4 Условия поверки

4.1 При проведении поверки должны соблюдаться следующие условия:

- температура воздуха, °С	от 15 до 25
- относительная влажность, %, не более	80
- атмосферное давление, кПа	от 94 до 106
- напряжение питания, В	(220 ± 22)
- частота, Гц	(50 ± 1)

Перед началом работы анализатор необходимо выдержать при данных условиях не менее часа.

4.2 При проведении поверки анализатор необходимо предохранять от следующих воздействий:

- потоков воздуха от вентиляционных отверстий или кондиционера/нагревателя;

- прямых солнечных лучей.

5 Проведение поверки

5.1 Внешний осмотр

5.1.1 При проведении внешнего осмотра должно быть установлено соответствие анализатора следующим требованиям:

отсутствие механических повреждений корпуса анализатора и элементов управления;

- наличие маркировки на анализаторе с ясным указанием типа, изготовителя, серийного номера, года выпуска анализатора.

5.1.2 Анализатор считают прошедшим операцию поверки, если:

- на корпусе анализатора отсутствуют механические повреждения;

 маркировка анализатора содержит сведения о типе, изготовителе, серийном номере, годе выпуска.

5.2 Опробование анализатора

Опробование анализатора включает в себя следующие операции:

- проверка выхода на рабочий режим

- проверка правильности расчета концентрации аналита.

5.2.1 Проверка выхода на рабочий режим анализатора проводится путём включения анализатора в соответствии с указаниями, приведёнными в руководстве по эксплуатации (пароль по умолчанию 123456) и прогрева в течение 40 минут.

Рисунок 1 - Процесс инициализации анализтора

После прогрева анализатора (выхода на режим) на дисплее отображается меню:

Glugop	P			*********	*****				
Salasana ana ana ana ana ana ana ana ana an	Метод	TPI	A Construction of the second	Полниназвание	Общий Белок	and the second second	Десяли	0.0	Martin Contraction
GGT	Измер метод	Конечная точ	VA V	Направл реакции	Возрастающая	1	Earsu.	ga	
ALT	Передина волны	\$46	Y	Втор дляна волны		•	Диапланейности	5	150
ALP	Метод калибровки	Janeith.	* Cossolad	К-фактор	ALL ALL STATE		CATHER MANNERS	10	
LDH	OSSEM PODEN GIL	40	R11j.42		R2(pt)	Contraction of the second			
THE	Цикл/время бланка	ő	7 135	8		/ 180	Себестоимость	150	Цена 150
END DI3	Links/spews peakur	w 34	/ 765	36		/ 810	Hannon	1.15	Смешение о
Creal	CARL LA PRIME	State .	NUMBER OF STREET, STRE	RON MUR		Manager and see		Sand Horn	and the set
Ures	gunnin	mmm	mannannan	mann	mmmmm			mmm	mananna
Chol	Parce Bassis	EB Carecootra	Ahaney ISIGS	SSTOR S	and a second			aaaaaa	
Alb	66	88/Плазиа						000000000	
CaAs	66	\$8Сыворстка	Женский Тёгод	e 60107	65 z 85				
into into into into into into into into	60	90Сыворстка	1 Mecru	101decau s	60 ± 90				
a ti									
12									
0									
192									
a									
aArtiy									
Fe									
N N	8								
Na									
1Pu	8								
СК-НАВ									
State oc	G1								

Рисунок 2 - Главное меню анализтора

5.2.2 Провести проверку правильности расчета молярной концентрации аналита. Для этого подготовить ГСО 11292-2019, ГСО 9913-2011, дистиллированную воду и реагенты для определения кальция, калия, магния и холестерина (далее по тексту – аналит) в соответствии с их технической документацией.

5.2.4 Провести измерение значения молярной концентрации кальция, калия, магния и холестерина в дистиллированной воде и по 5 измерений молярной концентрации калия, кальция и магния для нормального и патологического уровня содержания калия, кальция, магния из состава ГСО 11292-2019, и по 5 измерений молярной концентрации холестерина в ГСО 9913-2011 в соответствии с методиками, установленными на анализаторе.

5.2.5 По результатам измерений рассчитать среднее арифметическое значение молярной концентрации аналита по формуле

$$C_{cp} = \frac{\sum_{i=1}^{n} C_i}{n} \tag{1}$$

где C_i – измеренное значение молярной концентрации анализатором, ммоль/дм³;

n – количество повторов измерений на анализаторе, равное пяти.

5.2.6 Рассчитать отклонение значения молярной концентрации, определенного анализатором ΔC_{0i} , ммоль/дм³, от опорного значения по формуле

$$\Delta C_{0i} = \frac{C_{cp} - C_{j^{2}}}{C_{j^{2}}} \cdot 100$$
(2)

где *С_{jэ}* – значение молярной концентрации аналита, ммоль/дм³, взятое из паспорта на ГСО 11292-2019, ГСО 9913-2011.

5.2.7 Анализатор считают прошедшим операцию поверки, если:

- анализатор вышел на рабочий режим не позднее, чем через 40 минут после прогре-

– измеренные значения молярной концентрации аналитов в дистиллированной воды не превышают 0,01 ммоль/дм³;

– полученное значение отклонения значения молярной концентрации не превышает ± 15 %.

5.3 Проверка программного обеспечения

Ba;

5.3.1 Для проверки программного обеспечения выполнить проверку версии программного обеспечения анализаторов, указанную в правом верхнем углу главного меню.

Проверить соответствие наименования программного обеспечение и номера версии ПО, указанных в распечатанной таблице с настройками данным, указанным в таблице 3 настоящей методике.

Таблица 3 –	Идентис	рикационные	данные	(признаки)) анализаторов
-------------	---------	-------------	--------	------------	----------------

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ДДС-240
Номер версии (идентификационный номер) ПО	не ниже 1.0.17(xxx)
Цифровой идентификатор ПО	Данные являются собственностью про-
	изводителя и являются защищёнными
	для доступа
	дилера и пользователей

5.3.2 Анализатор считают прошедшим операцию поверки, если версия ПО соответствует, указанной в таблице 3 настоящей методике поверки.

5.4 Определение (контроль) метрологических характеристик

5.4.1 Проверка диапазона измерений оптической плотности

5.4.1.1 Проверку диапазона измерений оптической плотности совмещают с операцией определения абсолютной погрешности измерений оптической плотности.

5.4.1.2 Анализатор считают прошедшим операцию поверки, если диапазон измерений оптической плотности составляет от 0,001 до 3,500 Б.

5.4.2 Определение абсолютной погрешности измерений оптической плотности

5.4.2.1 Провести по 10 измерений оптической плотности мер из состава рабочего эталона в соответствии с Приложением Б на рабочих длинах волн анализатора (340, 405, 450, 510, 546, 578, 630, 670 нм). Результаты измерений записать в протокол поверки (Приложение А).

5.4.2.2 По результатам измерений рассчитать среднее арифметическое значение оптической плотности *D_{cp}*, *Б*, для каждой меры на каждой длине волны по формуле

$$D_{cp} = \frac{\sum_{i=1}^{n} D_i}{n} \tag{1}$$

где *D_i* – измеренное значение оптической плотности анализатором, Б;

n – количество повторов измерений на анализаторе, равное десяти.

5.4.2.3 Рассчитать абсолютную погрешность измерений оптической плотности ΔD_{0i} , *Б*, для каждой меры на каждой длине волны по формуле

$$\Delta D_{0i} = D_{cp} - D_{j_{2}} \tag{2}$$

где D_{j_3} – значение оптической плотности меры, Б, из действующего свидетельства о поверке рабочего эталона.

5.4.2.4 Анализатор считают прошедшим операцию поверки, если рассчитанное значение абсолютной погрешности измерений оптической плотности в диапазоне от 0,01 до 2,00 Б не превышает \pm 0,06 Б, а в диапазоне св. 2,00 до 3,50 Б не превышает \pm 0,6 Б.

6 Оформление результатов поверки

6.1 Результаты поверки оформляются протоколом (Приложение А). Сведения о результатах поверки передаются в Федеральный информационный фонд.

<u>Начальник отдела Д-4</u> (должность)

<u>Начальник сектора</u> <u>МО СИМН отдела Д-4</u> (должность) (жодинсь)

А.В. Иванов (расшифровка полниси)

<u>Н.Ю. Грязских</u> (расшифровка подписи)

Начальник сектора отдела Д-4 (должность)

(подпись)

(подпись)

А.Н. Шобина (расшифровка подписи)

1.1

ПРИЛОЖЕНИЕ А

(рекомендуемое)

к методике поверки МП 041.Д4-19

«ГСИ. Анализаторы автоматические биохимические ДДС-240»

ПРОТОКОЛ ПЕРВИЧНОЙ/ПЕРИОДИЧЕСКОЙ ПОВЕРКИ

Средство измерений: Анализатор полуавтоматический биохимический Clima MC-15 со сканером радиочастотной метки (RFID)

Заводской номер СИ:

Владелец СИ:

 $r_{\rm k} = 1$,

ИНН владельца СИ: Применяемые эталоны:

Применяемая методика поверки: МП 041.Д4-19

Условия поверки:

Проведение поверки:

А.1 Внешний осмотр

А.2 Опробование анализатора

А.З Проверка диапазона измерений оптической плотности. Определение абсолютной погрешности измерений оптической плотности.

Заключение по результатам поверки:

Поверитель:

Дата поверки:

ПРИЛОЖЕНИЕ Б

(рекомендуемое)

к методике поверки МП .Д4-19

«ГСИ. Анализаторы автоматические биохимические ДДС-240»

Б.1. За день до проведения поверки набрать канистру системной дистиллированной (деионизованной) воды (необходимо для ее прогрева до комнатной температуры, т.к. в противном случае при бланке кювет могут образовываться пузырьки).

Б.2. Заменить кюветы на новые. Включить анализатор (Пароль по умолчанию 123456). Дождаться стабилизации лампы анализатора не менее 40 мин.

Рисунок Б.1 - Процесс инициализации анализтора

Б.З. Провести обнуление анализатора, установив в его ротор проб кюветы с дистиллированной водой и выбрав в меню программы раздела «выполнение водного бланка».

Рисунок Б.2 -/Проведение обнуления анализатора

Рисунок Б.3 - Проведение обнуления анализатора

Б.4. Выполнить промывку кювет (кюветы осушаются после промывки).

Рисунок Б.4 - Проведение промывки кювет

Б.5. Открыть крышку реакционного ротора анализатора. Достать сегмент №4 (кюветы 28-36). Убедиться, что в кюветах нет капель воды.

Рисунок Б.5 - реакционный ротор анализатора

Б.6. В 5 кювет, начиная с №28 с помощью дозатора добавить не менее 200 мкл измеряемых мер оптической плотности из состава рабочего эталона, в первую в сегменте кювету добавить дистиллированную воду.

Рисунок Б.6 - Размещение мер из состава рабочего эталона в сегменте

- Б.7. Установить сегмент в ротор.
- Б.8. Перейти в режим измерения оптической плотности.

Рисунок Б.7 - Режим измерения оптической плотности

Выбрать интервал измерения от 2 до 10 с (на усмотрение оператора), выбрать номер начальной измеряемой кюветы (28), выбрать режим «Поглощение».

Рисунок Б.8 - Выбор интервала времени измерения

Б.9. Начать измерение оптической плотности, нажав кнопку «Пуск». Как только появится десять строк со значениями оптической плотности, прекратить измерение, нажав кнопку «Стоп».

Рисунок Б.9 - Измерение оптической плотности

Б.10. Поставить следующую кювету в позицию для измерения и повторить процедуру измерения.

Рисунок Б.10 - Выбор номера позиции кюветы

Б.11. Последовательно повторить измерения всех кювет 10 раз (во время серии не рекомендуется делать перерывов во избежание изменения оптической плотности мер в кюветах из-за испарения).

Рисунок Б.11 - Отображение измеренных значений оптической плотности мер

Б.12. Сохранить данные. Для этого выделить полученные данные (Выделить нижнюю строку, зажать Shift, выделить верхнюю строку. Все строки должны подсветиться синим), скопировать их в текстовый файл (Ctrl+C, свернуть окно Win+D, создать текстовый файл .txt, вставить данные Ctrl+V).

Б.13. Полученные данные разделить на 10000.

Б.14. Выполнить инициализацию реакционного ротора.

Рисунок Б.12 - Инициализация реакционного ротора

Б.15. Выполнить промывку кювет, как описывалось ранее.