ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Киловольтметр многопредельный цифровой «ПрофКиП СКВ-120/140»

Назначение средства измерений

Киловольтметр многопредельный цифровой «ПрофКиП СКВ-120/140» (далее - киловольтметр) предназначен для измерения среднеквадратических значений напряжения переменного тока синусоидальной формы частотой 50 Гц, а также для измерения напряжения постоянного тока.

Описание средства измерений

Принцип действия киловольтметра основан на масштабном преобразовании высокого входного напряжения в заданное число раз с помощью высоковольтного делителя и преобразовании выходного напряжения делителя аналого-цифровым преобразователем (АЦП) с последующим отображением результатов измерения на жидкокристаллическом дисплее.

Функционально киловольтметр состоит из следующих основных узлов:

- блока делителя высоковольтного многопредельного цифрового (ДВМЦ), предназначенного для понижения значения высокого измеряемого напряжения до уровня измерений платой микроконтроллера;
- блока индикации, содержащего органы управления, органы индикации, разъем коммутации, разъемы для внешних подключений персонального компьютера (ПК), аккумуляторов и однофазного сетевого напряжения;
 - кабеля, соединяющего блок ДВМЦ и блок индикации;
- кабеля сетевого питания, предназначенного для подключения киловольтметра к однофазной сети переменного тока.

Блок индикации выполнен в металлическом корпусе. В состав входят следующие узлы:

- платы управления;
- клавиатура, совмещенная с передней лицевой панелью;
- защита экрана из поликарбоната, стойкая к истиранию и царапинам;
- разъем питания, разъем подключения аккумуляторов, разъем подключения блока ДВМЦ, разъем USB для подключения к ПК, клемма заземления;
 - символьный ЖК индикатор с расширенным температурным диапазоном работы;
- универсальная ручка для переноски и с функцией установки блока в удобное для работы положение.

Рабочее положение блока индикации – горизонтальное.

Блок ДВМЦ выполнен в металлическом корпусе, совмещенном с пластиковым изолятором с последующей окраской. В состав блока ДВМЦ входят следующие узлы:

- группы делителей высоковольтных резистивно-емкостных;
- дисковый антикоронный экран;
- система электромагнитных экранов;
- плата измерительная;
- двухцветный светодиод индикации предела измерения и светодиод наличия высокого напряжения;
 - клемма заземления и соединительный разъем с блоком индикации.

Отличительной особенностью киловольтметра является конструкция блока ДВМЦ. Конструктивно в блоке ДВМЦ размещены две группы делителей высоковольтных резистивно-емкостных, автоматически переключающихся в зависимости от значения входного напряжения, что обеспечивает линейность преобразования высокого входного напряжения. Для удобства измерения различного по характеру изменения (быстро или медленно меняющегося) напряжения в киловольтметре предусмотрена возможность установки различного времени усреднения измерения.

Киловольтметр позволяет производить до пятнадцати записей измеряемого значения напряжения с длительностью записи по 2 секунды каждая.

В киловольтметре реализована функция стабилизации физико-химических параметров жидкого диэлектрика, заполняющего блок ДВМЦ, методом адсорбционной очистки, обеспечивающая стабильность коэффициента масштабного преобразования входного напряжения.

Дополнительно киловольтметр оснащен интерфейсом USB для отображения на дисплее ПК формы и параметров кривой напряжения в масштабе реального времени.

В киловольтметрах предусмотрены специальные меры, обеспечивающие безопасность проведения работ. К ним относятся:

- индикация наличия высокого напряжения на блоке ДВМЦ;
- индикация диапазона измерения на блоке ДВМЦ;
- индикация превышения измеряемого напряжения на блоке индикации.

Общий вид киловольтметра многопредельного цифрового «ПрофКиП СКВ-120/140»

Программное обеспечение

Встроенное ПО (микропрограмма) реализовано аппаратно и является метрологически значимым. Метрологические характеристики киловольтметра нормированы с учетом влияния встроенного ПО. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) киловольтметра предприятием-изготовителем и недоступна для потребителя.

Таблица 1 – Характеристики программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Отсутствует
Номер версии (идентификационный номер ПО)	Не ниже v1.1c
Цифровой идентификатор ПО	_
Другие идентификационные данные (если имеются)	_

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с ПР 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики киловольтметра приведены в таблице 2. Таблица 2— Метрологические и технические характеристики киловольтметров

Характеристика	Значение		
Диапазон измерения среднеквадратических значений	От 2,000 до 26,000		
напряжения переменного тока синусоидальной формы	От 26,01 до 120,00		
частотой 50 Гц, кВ			
	От 2,000 до 26,000		
Диапазон измерения напряжения постоянного тока, кВ	От 26,01 до 140,00		
Пределы допускаемой относительной погрешности			
измерения среднеквадратических значений напряжения	± 0.25		
переменного тока синусоидальной формы частотой 50 Гц,	± 0,23		
переменного тока синусоидальной формы частотой 50 г ц,			
Пределы допускаемой относительной погрешности	± 0,25		
измерения напряжения постоянного тока, %			
Входное сопротивление постоянному току, МОм	535 ±10 %		
Время установления рабочего режима, с, не более	5,0		
Время усреднения измерения, с	0,5; 1,0; 2,5; 5,0		
Количество диапазонов измерения	2		
Режим переключения диапазонов измерения	автоматический		
Максимальное время работы	8 часов с последующим		
Тутаксимальное время расоты	отключением на 1 час		
Габаритные размеры блока индикации(ш*в*г), мм	$(258\pm10)x(102\pm10)x(256\pm10)$		
Габаритные размеры блока ДВМЦ, мм	$(300\pm10)x(300\pm10)x(800\pm10)$		
Масса блока индикации, кг	3±0,3		
Масса блока ДВМЦ, кг	12±0,3		
	от сети переменного тока (220 ±		
Электропитание	22) B, (50±0,5) Гц		
Максимальная потребляемая мощность, В-А	20		
Средняя наработка на отказ, не менее, ч	5000		
Средний срок службы, лет, не менее	5		
Рабочие условия применения:			
температура окружающего воздуха, °С	от плюс 5 до плюс 40		
относительная влажность воздуха, %	30-80		
атмосферное давление, кПа	от 84 до 106,7		

Знак утверждения типа

наносится на титульный лист паспорта типографским способом, на лицевую панель блока индикации киловольтметра - методом трафаретной печати.

Комплектность средства измерений

В комплект киловольтметра (зав. №3001) входят составные части, принадлежности и документация, приведенные в таблице 3.

Таблица 3 –	Комплектность	киловольтметра	(32B	No 3001)
таолица 5 –	TOMINITORINOCID	KHIJODOJIDIMCIDA	voab.	112 DOULL

Наименование	Наименование Обозначение	
панменование	Ooosha lehre	шт.
Блок индикации	ПК.422120.003.01	1
Блок ДВМЦ	ПК. 422120.003.02	1
Межблочный соединительный кабель	ПК. 422120.003.03	1
Кабель сетевой		1
Вставка плавкая 3,15А	АГО.481.304 ТУ	2
Паспорт	422120-003-68134858-2014 ПС	1
Методика поверки	422120-003-68134858-2014 МП	1

Поверка

осуществляется в соответствии с документом 422120-003-68134858-2014 МП «Киловольтметр многопредельный цифровой «ПрофКиП СКВ-120/140». Методика поверки», утвержденным ФГУП «ВНИИМС» в августе 2014 г.

Основные средства поверки: вольтметр амплитудный ВА-3.1 (г.р.№48113-11); трансформатор напряжения измерительный эталонный NVRD (г.р. №56003-13); трансформатор напряжения эталонный 4820-HV spez (г.р. № 28982-05); источник высокого напряжения ИВН-500 из состава ГЭТ175-2009; государственный первичный специальный эталон единицы электрического напряжения постоянного тока в диапазоне ±(1...500) кВ (ГЭТ181-2010).

Сведения о методиках (методах) измерений

приводятся в паспорте 422120-003- 68134858-2014 ПС.

Нормативные и технические документы, устанавливающие требования к киловольтметру многопредельному цифровому «ПрофКиП СКВ-120/140»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 12.2.091-2012 «Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования».
- 3. ГОСТ Р 51522.1-2011 «Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Часть 1. Общие требования и методы испытаний».
- 4. ТУ 422120-003-68134858-2014 «Киловольтметр многопредельный цифровой «ПрофКиП СКВ-120/140». Технические условия».
- 5. ГОСТ 12.2.091-2002 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

ЗАО «ПрофКИП» 141006, Россия, Московская область, г. Мытищи, ул. Белобородова, д. 2. info@etalonpribor.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п.

« » 2015 г.