ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Твердомеры универсальные ZHU250CL-A, ZHU250CL-S

Назначение средства измерений

Твердомеры универсальные ZHU250CL-A, ZHU250CL-S (далее - твердомеры) предназначены для измерений твердости металлов и сплавов по шкалам Роквелла, Супер-Роквелла, Виккерса и Бринелля в соответствии с ГОСТ 9013-59, ГОСТ 22975-78, ГОСТ Р ИСО 6507-1-2007, ГОСТ 9012-59.

Описание средства измерений

Принцип действия твердомеров основан:

- для шкал Роквелла и Супер-Роквелла на статическом вдавливании алмазного конусного или шарикового наконечников с последующим измерением глубины внедрения наконечника:
- для шкал Виккерса на статическом вдавливании наконечника алмазной пирамиды Виккерса, с последующим измерением длин диагоналей восстановленного отпечатка;
- для шкал Бринелля на статическом вдавливании твёрдосплавного шарикового наконечника с последующим измерением диаметра окружности отпечатка.

Твердомеры представляют собой стационарные средства измерений, состоящие из устройства приложения нагрузки и измерительного блока.

Твердомеры оснащены видеокамерой и персональным компьютером, программное обеспечение (ПО) которого позволяет находить отпечаток и определять значение твердости. Твердомеры могут поставляться и без ПО, в этом случае они будут использоваться только для измерений твердости по шкалам Роквелла и Супер-Роквелла.

Твердомеры ZHU250CL-S – это полуавтоматическая модель. Твердомеры ZHU250CL-A полностью автоматические, поставляются с механизированным двухкоординатным столом, механизированной шариковинтовой передачей и устройством автофокусировки.

Внешний вид твердомеров с указанием мест нанесения знака утверждения типа и пломбирования приведён на рисунке 1.

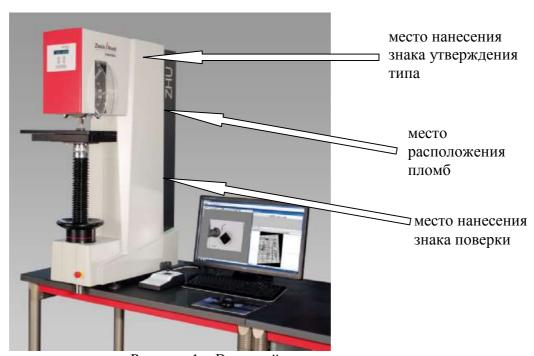


Рисунок 1 – Внешний вид твердомеров

Программное обеспечение

Встроенное ПО используется для управления работой твердомеров, записи, хранения и статистической обработки результатов измерений. Внешнее ПО для персонального компьютера поддерживает все функции встроенного ПО в расширенном варианте. Дополнительно оно позволяет автоматически распознавать отпечаток, измерять длины диагоналей и вычислять значение твердости.

Идентификационные признаки (данные) ПО приведены в таблице 1.

Таблица 1

	Встроен	ное ПО	Внешнее ПО
Идентификационные данные	Значение для твердомеров		Значение для
(признаки)	ZHU250CL-A ZHU250CL-S		твердомеров
			ZHU250CL-A,
			ZHU250CL-S
Идентификационное	ZHU250CL-A	ZHU250CL-S	ZHμ.HD
наименование ПО			
Номер версии	<u>@b.ba.Oh</u>	<u>@b.ba.Oh</u>	v 7.0.597 и выше
(идентификационный номер) ПО			
Цифровой идентификатор ПО	-	-	-
(контрольная сумма			
исполняемого кода)			

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Испытательные нагрузки для шкал Роквелла и Супер-Роквелла, а также пределы допускаемой относительной погрешности нагрузок приведены в таблице 2.

Таблица 2

Шкалы	Нагрузки, Н		Пределы допускаемой относительной			
		_	погрешности, %			
	основная	предварительная	предварительной	основных		
			нагрузки	нагрузок		
Шкала Роквелла						
HRA	588,4					
HRB	980,7	98,07	±2,0	±0,5		
HRC	1471					
Шкала Супер-Рокв	елла					
HR15N, HR15T	147,1					
HR30N, HR30T	294,2	29,42	±2,0	$\pm 0,66$		
HR45N, HR45T	441,3					

Диапазоны измерений твердости по шкалам Роквелла и Супер-Роквелла и соответствующие им пределы допускаемых абсолютных погрешностей твердомеров приведены в таблице 3.

Таблица 3

Шкалы твердости	Диапазоны измерений твёрдости	Пределы допускаемых абсолютных погрешностей твердомеров
Шкала Роквелла		
HRA	от 70 HRA до 93 HRA	±1,2 HRA
HRB	от 50 HRB до 100 HRB	± 2,0 HRB
HRC	от 20 HRC до 35 HRC	±2,0 HRC
	от 35 HRC до 55 HRC	±1,5 HRC
	от 55 HRC до 70 HRC	±1,0 HRC
Шкала Супер-Роквелла		
HR15N	от 70 HR15N до 94 HR15N	±1,0 HR15N
HR30N	от 40 HR30N до 76 HR30N	±2,0 HR30N
	от 76 HR30N до 86 HR30N	±1,0 HR30N
HR45N	от 40 HR45N до 78 HR45N	±2,0 HR45N
HR15T	от 62 HR15T до 93 HR15T	±3 HR15T
HR30T	от 40 HR30T до 70 HR30T	±3,0 HR30T
	от 70 HR30T до 82 HR30T	±2,0 HR30T
HR45T	от 10 HR45T до 72 HR45T	±3 HR45T

Испытательные нагрузки по шкалам Виккерса, H: ______9,81, 19,61; 29,42; 49,03; 98,07; 196,1; 294,2; 490,3; 980,7.

Допустимое отклонение испытательной нагрузки, % $\pm 1,0.$

Диапазоны измерений твердости по шкалам Виккерса и пределы допускаемых абсолютных погрешностей твердомеров приведены в таблице 4.

Таблица 4

Обозначение	шкалы		Интервалы измерений твёрдости HV								
твёрдости		100±	200±	300±	400±	500±	600±	700±	800±	900±	1225±
		50	50	50	50	50	50	50	50	50	275
		Пред	елы до	пускае	мых аб	солютн	ых пог	решно	стей тв	ердомеј	ров, НV
							(±)				_
HV 1		4,5	10	14	18	27,5	32,5	37,5	51	57	120
HV 2		4,5	7,5	10,5	18	22	26	30	34	47,5	90
HV 3		4,5	7,5	10,5	13,5	22	26	30	34	40	60
HV 5		4,5	7,5	10,5	13,5	16,5	19,5	22,5	25,5	38	60
HV 10		4,5	7,5	10,5	13,5	16,5	19,5	22,5	25,5	28,5	45
HV 20		4,5	7,5	10,5	13,5	16,5	19,5	22,5	25,5	28,5	30
HV 30		1	7,5	7	9	11	13	15	17	19	30
HV 50		-	7,5	7	9	11	13	15	17	19	30
HV 100		ı	-	7	9	11	13	15	17	19	30

Испытательные нагрузки и диапазоны измерений твердости по шкала	ам Бринелля , HBW
HBW 1/10 (нагрузка 98 H);	от 39 до 200.
HBW 1/30 (нагрузка 294 H);	от 95 до 650.
HBW 2,5/62,5 (нагрузка 613 H);	от 32 до 218;
HBW 2,5/187,5 (нагрузка 1839 H)	от 150 до 650;
HBW 5/250 (нагрузка 2452 H);	от 32 до 218;
Пределы допускаемой относительной погрешности нагрузки, %	±1,0.
Пределы допускаемых абсолютных погрешностей твердомеров по	о шкалам Бринелля
приведены в таблице 5.	

Таблица 5

Обозначение шкал	Интервалы измерения твёрдости, HBW						
измерения твёрдости	30	75	125	200	300	400	550
	± 20	±25	±25	±50	±50	±50	±100
	Пределы допускаемых абсолютных погрешностей						
	твердомеров, HBW, (±)						
HBW 2,5/62,5; HBW 5/250;	1,5	3,0	4,5	7,5	-	-	-
HBW 1/10							
HBW 1/30	-	3,0	4,5	7,5	10,5	13,5	18
HBW 2,5/187,5	-	-	-	7,5	10,5	13,5	18

Рабочие условия применения:

- температура окружающего воздуха, °С ______ от 15 до 30;
- относительная влажность окружающего воздуха, %, не более 80. Напряжение питания от сети переменного тока частотой (50 ± 1) Гц, В 220 ±22 . Габаритные размеры, мм, не более:
- длина 400;
- ширина <u>600;</u> - высота <u>1100.</u>

Знак утверждения типа

наносится на корпус твердомера в виде наклеиваемой плёнки и на титульный лист руководства по эксплуатации типографским или иным способом.

Комплектность средства измерений

В комплект поставки входят:

твердомер ZHU250CL-A или ZHU250CL-S (по заказу)	1 шт.;
персональный компьютер (по заказу)	1 шт.;
видеокамера (по заказу)	1 шт.;
внешнее программное обеспечение ZHµ.HD (по заказу)	
руководство по эксплуатации INDENTEC ZHU250CL - 01 РЭ	1 экз.;
руководство по эксплуатации INDENTEC ZHµ.HD - 01 РЭ (по заказу)	1 экз.

Поверка

Основные средства поверки:

эталонные меры твёрдости с метрологическими характеристиками 2 разряда по ГОСТ 9031-75 со значениями:

- (25±5) HRC; (45±5) HRC; (65±5) HRC; (90±10) HRB; (83±3) HRA;
- (92±2) HR15N; (45±5) HR30N; (80±4) HR30N; (49±6) HR45N; (50±5) HR30T; (76±6) HR30T;
 - (450±75) HV; (800±50) HV;
 - (100±25) HBW; (200±50) HBW; (400±50) HBW.

Знак поверки наносится на боковую панель твердомеров.

Сведения о методиках (методах) измерений

Твердомеры универсальные ZHU250CL-A, ZHU250CL-S. Руководство по эксплуатации. INDENTEC ZHU250CL - 01 PЭ.

Нормативные и технические документы, устанавливающие требования к твердомерам универсальным ZHU250CL-A, ZHU250CL-S

- 1 ГОСТ 23677-79 «Твердомеры для металлов. Общие технические требования».
- 2 ГОСТ Р ИСО 6507-1-2007 «Металлы и сплавы. Измерение твёрдости по Виккерсу. Часть 1 Метод измерения».
- 3 ГОСТ Р 8.695-2009 «Государственная система обеспечения единства измерений. Металлы и сплавы. Измерения твёрдости по Виккерсу. Часть 2. Поверка и калибровка твердомеров».
- 4 ГОСТ 8.063-2012 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений твёрдости металлов и сплавов по шкалам Виккерса».
 - 5 ГОСТ 9012-59 «Металлы. Метод измерения твёрдости по Бринеллю».
- 6 ГОСТ 8.062-85 «Государственная система обеспечения единства измерений. Государственная специальный эталон и государственная поверочная схема для средств измерений твёрдости по шкалам Бринелля».
- 7 ГОСТ 9013-59 «Металлы и сплавы. Метод измерения твёрдости по Роквеллу. Шкалы A, B, C».
- 8 ГОСТ 22975-78 «Металлы и сплавы. Метод измерения твёрдости по Роквеллу при малых нагрузках (по Супер-Роквеллу).
- 9 ГОСТ 8.064-94 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений твёрдости по шкалам Роквелла и Супер Роквелла».
 - 10 Техническая документация изготовителя.

Изготовитель

Фирма «Indentec Hardness Testing Machines Limited», Великобритания

Адрес: Unit 30 Navigation Drive, Hurst Business Park, Brierley Hill, West Midlands, DY5 1UT, United Kingdom

Тел.: +44 (0)1384 48 40 70 Факс: +44 (0)1384 48 10 74 E-mail: <u>sales@indentec.com</u>

Заявитель

Общество с ограниченной ответственностью «Цвик трейдинг - M»

(ООО «Цвик трейдинг - М»)

Юридический адрес: 121151, г. Москва, ул. Раевского, д. 4

ИНН: 7708571452

Тел. (495) 783-88-12; факс (495) 783-88-13

E-mail: <u>info@zwick.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятия «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»)

Юридический адрес: 141570, Московская область, Солнечногорский район, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская область, Солнечногорский район, п/о Менделеево

Телефон: +7(495)526-63-00, факс: +7(495)526-63-00

E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2016 г.