

# ДАТЧИКИ СИЛОИЗМЕРИТЕЛЬНЫЕ РТ1 МЕТОДИКА ПОВЕРКИ

МП 2301-283-2016

1.p. 64036-16

Руководитель лаборатории ФГУП «ВНИИМ им. Д.И. Менделеева»

А.Ф. Остривной

Настоящая методика поверки распространяется на датчики силоизмерительные PT1 (далее - датчики), изготовленные фирмой «GTM Testing and Metrology GmbH», Германия, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 1 год.

## 1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1.

Таблица 1

|                                                                                                            |        | таолица т                                |
|------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|
| Наименование операции                                                                                      | Номер  | Средства поверки и их                    |
|                                                                                                            | пункта | нормативно-технические                   |
|                                                                                                            | МΠ     | характеристики                           |
| 1. Внешний осмотр                                                                                          | 4.1    | -                                        |
| 2. Определение метрологических характеристик                                                               | 4.2    | Машины силовоспроизводящие               |
| -определение составляющих погрешности, связанных с воспроизводимостью показаний и повторяемостью показаний | 4.2.1  | 1-го разряда по ГОСТ <b>8.640-2014</b> . |
| - определение составляющей погрешности,<br>связанной с дрейфом нуля                                        | 4.2.2  |                                          |
| -определение составляющей погрешности, связанной с гистерезисом                                            | 4.2.3  |                                          |
| - определение составляющей погрешности, связанной с ползучестью                                            | 4.2.4  |                                          |
| - определение составляющей погрешности, связанной с интерполяцией                                          | 4.2.5  |                                          |
| - оценка погрешности датчика                                                                               | 4.2.6  |                                          |

#### 2. ТРЕБОВАНИЕ БЕЗОПАСНОСТИ

При проведении поверки соблюдают требования безопасности, указанные в эксплуатационной документации на поверяемые датчики, а также на используемое поверочное, испытательное и вспомогательное оборудование.

# 3. УСЛОВИЯ ПОВЕРКИ, ПОДГОТОВКА К НЕЙ

- 3.1 Операции по всем пунктам настоящей методики проводят при любом сочетании значений влияющих факторов, соответствующих рабочим условиям эксплуатации поверяемых датчиков. Температура во время поверки не должна изменяться более чем на  $\pm$  1  $^{0}$ C.
- 3.2 Для надежного выравнивания температуры датчика и окружающего воздуха, датчик должен быть доставлен на место поверки не менее чем за 12 часов до ее начала.
- 3.3 Временные интервалы между двумя последовательными нагружениями должны быть по возможности одинаковыми.
- 3.4 Регистрировать показания следует не ранее, чем через 30 секунд от начала измерения силы.

#### 4. ПРОВЕДЕНИЕ ПОВЕРКИ

#### 4.1 Внешний осмотр.

При внешнем осмотре проверяют комплектность поверяемых датчиков, отсутствие видимых повреждений, наличие необходимой маркировки, соответствие внешнего вида требованиям эксплуатационной документации и ее соответствие утвержденному типу.

4.2. Определение метрологических характеристик.

Процедуры, описанные в п.4.2 настоящей методики проводят как для режима растяжения, так и для режима сжатия. Для датчиков с двумя независимыми измерительными

каналами, процедуры, описанные в п.4.2 настоящей методики проводят как для режима растяжения, так и для режима сжатия для каждого измерительного канала.

Перед проведением измерений датчик нагружают максимальной силой в заданном режиме (растяжение или сжатие) и выдерживают в течении 30 минут. Затем нагружают три раза максимальной силой в заданном режиме (растяжение или сжатие). Продолжительность приложения каждого предварительного нагружения должна составлять от 1 минуты до 1,5 минут.

Нагружают датчик от НмПИ до НПИ двумя сериями эталонных сил только с возрастающими значениями, при одном положении датчика в рабочем пространстве эталонной машины. Регистрируют соответствующие показания датчика  $X_1, X_2$ .

Затем нагружают и разгружают датчик двумя рядами силы с возрастающими и убывающими значениями в положениях с поворотом на  $120^0$  и  $240^0$  (рисунок 2) относительно первоначального положения. Регистрируют соответствующие показания датчика  $X_3$ ,  $X_5$  (при нагружении) и  $X'_4$ ,  $X'_6$  (при разгружении).

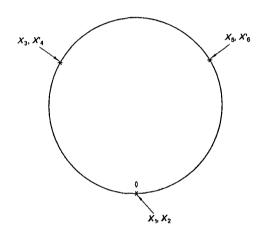



Рисунок 2.

Каждый ряд нагружения (разгружения) должен содержать не менее восьми ступеней, по возможности, равномерно распределенных по диапазону измерений.

Следует соблюдать временной интервал не мене 3-х минут между последовательными рядами нагрузки.

После полного разгружения датчика следует регистрировать его нулевые показания после ожидания в течение, по крайней мере, 30 секунд.

Не менее 1 раза за время поверки датчик должен быть разъединен с переходными деталями и заново собран. Рекомендуется делать это между вторым и третьим рядами нагружения.

Если датчик применяют только для возрастающей нагрузки, то при поверке определяют вместо гистерезиса характеристику ползучести. При этом записывают показания на 30 с и 300 с после приложения максимальной нагрузки, в каждом из режимов приложения силы. Если ползучесть измеряется при нулевой силе, датчик должен быть предварительно нагружен максимальной силой и выдержан под нагрузкой в течение 60 с. Испытание на ползучесть может проводиться в любое время после предварительной нагрузки.

Результаты измерений заносят в протокол (Приложение 1).

4.2.1 Определение составляющих погрешности, связанных с воспроизводимостью показаний и повторяемостью показаний, b и b'.

Эти составляющие погрешности рассчитываются для каждой ступени прикладываемой силы при вращении датчика (b) и без вращения (b'), с помощью следующих уравнений:

$$b = \frac{\left| \frac{X_{\text{max}} - X_{\text{min}}}{\overline{X_r}} \right| \cdot 100\%$$

$$\Gamma дe \quad \overline{X}_r = \frac{X_1 + X_3 + X_5}{3}$$

$$b' = \left| \frac{X_2 - X_1}{\overline{X}_{wr}} \right| \cdot 100\%$$

где 
$$\overline{X}_{wr} = \frac{X_1 + X_2}{2}$$

Результаты вычислений заносят в протокол (Приложение 1).

Полученные значения b и b' не должны превышать установленных пределов, указанных в таблице 2.

4.2.2 Определение составляющей погрешности, связанной с дрейфом нуля,  $f_0$ .

До и после каждой серии испытаний следует записывать показания без нагрузки. Нулевое показание следует регистрировать примерно через 30 секунд после того, как нагрузка полностью снята.

Составляющая погрешности, связанная с дрейфом нуля рассчитывается по формуле:

$$f_0 = \frac{i_f - i_0}{X_N} \cdot 100\%$$

где  $i_0$  и  $i_f$  - показания до приложения нагрузки и после разгружения соответственно;  $X_N$  – показания при максимальной нагрузке.

Результаты вычислений заносят в протокол (Приложение 1).

Полученное значение  $f_0$  не должно превышать значений, указанных в таблице 2.

4.2.3 Определение составляющей погрешности, связанной с гистерезисом, v.

Составляющая погрешности, связанная с гистерезисом определяется при сериях нагружения с возрастающими силами и затем с уменьшающимися силами.

Разность между значениями, полученными для обеих серий с возрастающими силами и с убывающими силами, позволяет рассчитать составляющую погрешности, связанную с гистерезисом, используя следующие уравнения:

$$v = \frac{v_1 + v_2}{2} ,$$

где 
$$v_1 = \left| \frac{X_4' - X_3}{X_3} \right| \cdot 100\%$$
,  $v_2 = \left| \frac{X_6' - X_5}{X_5} \right| \cdot 100\%$ 

Результаты вычислений заносят в протокол (Приложение 1).

Максимальное значение  $\nu$  не должно превышать значений, указанных в таблице 2.

4.2.4 Определение составляющей погрешности, связанной с ползучестью, c.

Рассчитать разницу выходного сигнала  $i_{30}$ , полученного на 30 с и  $i_{300}$ , полученного на 300 с после приложения или снятия максимальной силы, выразить эту разницу в процентах от максимального отклонения по формуле:

$$c = \left| \frac{i_{300} - i_{30}}{X_N} \right| \cdot 100\%$$

Результаты вычислений заносят в протокол (Приложение 1).

Максимальное значение c не должно превышать значений, указанных в таблице 2.

4.2.5 Определение составляющей погрешности, связанной с интерполяцией,  $f_c$ .

Для каждой ступени нагружения относительную погрешность градуировочной характеристики рассчитывают по формуле:

$$f_c = \frac{\overline{X}_r - X_a}{X_a} \cdot 100\%$$

где  $\overline{X}_r$  по п. 4.2.1;

 $X_a$  - значение, рассчитанное по градуировочной характеристике  $X_a = X_a(F_i)$ , где  $F_i$  – приложенная эталонная сила.

Результаты вычислений заносят в протокол (Приложение 1).

Полученное значение  $f_c$  не должно превышать значений, указанных в таблице 2.

Примечание: полученные значения отклонений характеризуют временную нестабильность показаний за интервал между поверками.

4.2.6 Оценка относительной погрешности

Доверительная относительная погрешность, т.е. интервал, в котором с вероятностью 0,95 лежит значение погрешности оценивается по формуле:

$$\hat{f}_c \pm W$$

где  $\hat{f}_c$  - максимальное полученное значение относительной погрешности градуировочной характеристики;

W — относительная расширенная неопределенность определения погрешности градуировочной характеристики рассчитанная для каждой нагрузки по формуле:

$$W = k \cdot w_c$$

$$w_c = \sqrt{w_1^2 + w_2^2 + w_3^2 + w_4^2 + w_5^2 + w_6^2}$$

где k = 2, для уровня доверия 0,95;

 $W_1$  — относительная стандартная неопределенность, связанная с приложенной эталонной силой;

$$w_2 = \frac{1}{|\overline{X_r}|} \cdot \sqrt{\frac{1}{6} \cdot \sum_{i=1,3,5} (X_i - \overline{X_r})^2} \cdot 100\%$$
 – относительная стандартная неопределенность,

связанная с воспроизводимостью результатов измерений;

 $w_3 = \frac{b'}{\sqrt{3}}$  — относительная стандартная неопределенность, связанная с повторяемостью

результатов измерений;

$$w_4 = \frac{1}{\sqrt{6}} \cdot \frac{r}{F} \cdot 100\%$$
 — относительная стандартная неопределенность, связанная с

разрешающей способностью индикатора, где F — показания при приложенной нагрузке, r — разрешающая способность, равная дискретности отсчетного устройства;

 $w_5 = \frac{v}{3\sqrt{3}}$  — относительная стандартная неопределенность, связанная с гистерезисом,

учитывается, если поверка проводилась при возрастающей и убывающей нагрузках;

 $w_5 = \frac{c}{\sqrt{3}}$  — относительная стандартная неопределенность, связанная с ползучестью,

учитывается, если поверка проводилась только при возрастающей нагрузке;

 ${\bf w}_6 = f_0$  – относительная стандартная неопределенность, связанная с дрейфом нуля.

Результаты вычислений заносят в протокол (Приложение 1).

Полученный интервал не должен выходить за пределы относительной погрешности, что выражается неравенством:

$$\left|\hat{f}_c\right| + W \leq \delta ,$$

где  $\delta$  – пределы относительной погрешности, %

Строится график зависимости  $\delta$  от силы методом наименьших квадратов по всем точкам данных.

При превышении пределов допускаемой относительной погрешности, датчик может быть подвергнут внеочередной поверке после построения новой градуировочной характеристики. В этом случае интервал между поверками может быть сокращен.

# Метрологические характеристики:

Таблица 2

|                                       | Предель | ные значе | ения, % |         | ·    |       |
|---------------------------------------|---------|-----------|---------|---------|------|-------|
| допускаемой относительной погрешности | b       | <i>b'</i> | $f_c$   | $f_0$   | ν    | c     |
| ± 0,06                                | 0,05    | 0,025     | ± 0,025 | ± 0,012 | 0,07 | 0,025 |

### 5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ.

- 5.1 Положительные результаты первичной и периодической поверок оформляют выдачей свидетельства о поверке и протоколов испытаний. В свидетельстве о поверке указываются действительные значения доверительной погрешности в соответствующем диапазоне измерений и уравнение зависимости доверительной относительной погрешности от измеряемой силы, также приводится градуировочная характеристика в форме зависимости показаний от измеряемой силы и обратной функции для вычисления значений силы по показаниям датчика.
- 5.2 Датчик, не удовлетворяющий установленным требованиям, к выпуску и применению не допускают и выдают извещение о непригодности в установленном порядке.

|                       | ПРОТО                                                                                             | ОКОЛ М            | <u> </u>                         |                                  |                                |                  | « <u></u> | » | Прі           | иложени<br>20 г |       |  |
|-----------------------|---------------------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------------------------|--------------------------------|------------------|-----------|---|---------------|-----------------|-------|--|
|                       | 1. Тип                                                                                            |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       | 2. Jabo                                                                                           | дскои но          | мер                              |                                  |                                |                  |           |   | <del></del> _ |                 |       |  |
|                       | 3. Hpo:                                                                                           | изводител         | IЬ                               |                                  |                                |                  |           |   |               |                 |       |  |
|                       | 4. ГОД ИЗГОТОВЛЕНИЯ                                                                               |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       | <ol> <li>Условия поверки:         <ul> <li>температура воздуха</li> <li>°C</li> </ul> </li> </ol> |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       | - относительная влажность                                                                         |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       | Повория                                                                                           | <b>T</b> DODO TUE | 1001 HO                          |                                  |                                |                  |           |   |               |                 |       |  |
|                       | поверка                                                                                           | проводил          |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
| Эталонная<br>сила (F) | Показания                                                                                         |                   |                                  |                                  | Рассчитанные значения          |                  |           |   |               |                 |       |  |
|                       | X <sub>1</sub>                                                                                    | X <sub>2</sub>    | X <sub>3</sub> / X' <sub>4</sub> | X <sub>5</sub> / X' <sub>6</sub> | $\overline{\overline{X}}_{wr}$ | $\overline{X}_r$ | b'        | b | <i>V</i> (c)  | $f_c$           | w     |  |
| 0                     | †                                                                                                 |                   |                                  |                                  |                                | -                |           |   |               |                 | t — — |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   | 1                                |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   | +                                |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               | <del></del>     |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
|                       |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |
| 0                     |                                                                                                   |                   |                                  |                                  |                                |                  |           |   |               |                 |       |  |

Заключение по результатам поверки