

НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ДОЗА»

УТВЕРЖДАЮ

Раздел 4 «Методика поверки» Директор Центрального отделения ФБУ «ЦСМ Московской области»

С.Г. Рубайлов

2016 r.

УТВЕРЖДАЮ

Генеральный директор ООО НПП «Доза»

А.К. Нурлыбаев

El cermaoles 2016 r.

БЛОК ДЕТЕКТИРОВАНИЯ БДПН-101Д

Руководство по эксплуатации ФВКМ.418252.004РЭ

Содержание

1	Описание и работа изделия	3
	1.1 Назначение изделия	3
	1.2 Технические характеристики	3
	1.3 Состав изделия	5
	1.4 Устройство и работа	5
	1.5 Маркировка и пломбирование	6
	1.6 Упаковка	7
2	Использование по назначению	7
	2.1 Эксплуатационные ограничения	7
	2.2 Подготовка изделия к использованию	7
	2.3 Использование изделия	7
3	Техническое обслуживание	8
	3.1 Общие указания	8
	3.2 Меры безопасности	8
	3.3 Порядок технического обслуживания	8
4	Методика поверки	9
	4.1 Общие требования	9
	4.2 Операции и средства поверки	9
	4.3 Требования безопасности	10
	4.4 Условия проведения поверки и подготовка к ней	10
	4.5 Проведение поверки	10
	4.6 Оформление результатов поверки	11
5	Текущий ремонт	12
6	Хранение	12
7	Транспортирование	12
8	Утилизация	13
Пря	иложение А Габаритные и присоединительные размеры	14
Пря	иложение Б Схема электрическая соединений	17
	иложение Б Распайка разъема	18
	иложение В Инструкция по использованию	
	граммного обеспечения «DWPTest»	19

Настоящее руководство по эксплуатации содержит сведения о конструкции, принципе действия, характеристиках изделия и указания, необходимые для правильной и безопасной эксплуатации изделия (использования по назначению, технического обслуживания, текущего ремонта, хранения и транспортирования), а также сведения по утилизации изделия.

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия

- 1.1.1 Блок детектирования БДПН-101Д ФВКМ.418252.004 (далее по тексту блок) изготавливается в соответствии с требованиями ТУ 4361-134-31867313-2016.
 - 1.1.2 Блок предназначен для измерения плотности потока тепловых нейтронов (ППТН).
- 1.1.3 Блок применяется для контроля нейтронной активности среды (с использованием специальных конструкций замедлителей и методик измерений, применяемых на объекте), связанной с получением, переработкой и использованием радиоактивных материалов, на предприятиях и объектах ядерной энергетики, в том числе на исследовательских ядерных установках.
- 1.1.4 Блок имеет возможность передачи данных в информационные каналы связи, и обеспечивает доступ к обработанной информации по линиям связи, организованным на базе интерфейса RS-485 (протокол обмена DiBUS) и может работать в составе систем, комплексов и установок радиационного контроля.

1.2 Технические характеристики

- 1.2.1 Диапазон измерения плотности потока тепловых нейтронов от 0.02 до $2 \cdot 10^3$ с⁻¹·см⁻².
- - 1.2.3 Время установления рабочего режима не более 1 мин.
 - 1.2.4 Время непрерывной работы не менее 24 ч.
 - 1.2.5 Нестабильность показаний за 24 ч непрерывной работы не более ±10 %.
- 1.2.6 Блок обеспечивает выдачу кодов самодиагностики и текущей измерительной информации во внешнюю информационную сеть по линиям связи, организованным на базе интерфейса RS-485 (протокол обмена DiBUS).

 - 1.2.9 Рабочие условия эксплуатации:
 - температура окружающего воздуха от минус 10 до +60 °C;
- - атмосферное давление от 84,0 до 106,7 кПа.

Пределы допускаемой дополнительной погрешности измерений:

- при отклонении температуры окружающего воздуха относительно нормальных условий до предельных рабочих значений $\pm 10 \%$;
- при повышении влажности окружающего воздуха до 98 % при +35 °C и более низких температурах относительно нормальных условий...... ± 10 %.

- 1.2.10 Блок является устойчивым к воздействию синусоидальных вибраций в диапазоне частот от 1 до 120 Гц: с амплитудой смещения 1 мм в диапазоне частот от 1 до 13 Гц и ускорением 1 g в диапазоне частот от 13 до 120 Гц.
- 1.2.11 По сейсмостойкости блок относится к категории I по НП-031-01 и соответствует требованиям РД 25-818-87: по месту установки группа A, по функциональному назначению исполнения 1 для сейсмических воздействий интенсивностью до 9 баллов по шкале MSK-64 на отметке от 70 до 30 м относительно нулевой отметки.
- 1.2.13 По влиянию на безопасность блок относится к элементам нормальной эксплуатации класса безопасности 3H в соответствии с НП-001-15.
- 1.2.14 По электромагнитной совместимости блок соответствует требованиям установленным ГОСТ 32137-2013 для группы исполнения III, критерий качества функционирования А и удовлетворяет нормам помехоэмиссии, установленным ГОСТ 30805.22-2013 для оборудования класса А.
- 1.2.15 Блок выдерживает кратковременное в течение 5 мин предельно допустимое облучение фотонным излучением мощностью амбиентного эквивалента дозы 10 Зв·ч⁻¹. При этом через 6 ч после облучения блок сохраняет работоспособность и основную относительную погрешность измерений в пределах нормы.
- 1.2.16 Блок сохраняет работоспособность при воздействии фонового гамма-излучения мощностью амбиентного эквивалента дозы до 1 мЗв·ч⁻¹.
- 1.2.17 Конструкция и материалы покрытий блока являются стойкими к воздействиям дезактивирующих растворов:
- раствор № 1 для обработки наружных поверхностей путем влажной обтирки: едкий натр (NaOH) 50 г/л, перманганат калия (KMn $Ø_4$) 5 г/л;
- раствор № 2 для обработки наружных поверхностей путем влажной обтирки: щавелевая кислота ($H_2C_2O_4$) от 10 до 30 г/л, азотная кислота (HNO_3) 1 г/л;
- раствор № 3 для обработки разъёмов и контактов: 5 %-ный раствор лимонной кислоты в этиловом спирте C_2H_5OH (плотности 96 %) -10 мл на одну операцию.
- 1.2.18 По степени защиты человека от поражения электрическим током блок относится к классу II по ГОСТ 12.2.007.0-75.
- $1.2.19~\Pi$ о противопожарным свойствам блок соответствует ГОСТ 12.1.004-91 с вероятностью возникновения пожара не более 10^{-6} в год.
 - 1.2.20 Габаритные размеры и масса технических средств блока указанны в таблице 1.1.

Таблица 1.1 – Габаритные размеры и масса технических средств

Обозначение	Наименование	ние Габаритные размеры, мм		
ФВКМ.418266.023	Блок счетчика тепловых нейтронов БСТН-101	Ø50×618	1,0	
ФВКМ.408844.037	Блок сопряжения БС-101	220×166×87	1,0	

1.2.21 Длина сигнального кабеля между БСТН-101 и БС-101 не более 3,0 м.

- 1.2.22 Средняя наработка блока на отказ не менее 30 000 ч.
- - 1.2.24 Блок является восстанавливаемым и ремонтопригодным.
 - 1.2.25 Среднее время восстановления отказавшего блока с использованием ЗИП 1 ч.

1.3 Состав изделия

- 1.3.1 Блок состоит из блока счетчика тепловых нейтронов БСТН-101 (БСТН-101) и блока сопряжения БС-101 (БС-101), соединённых сигнальным кабелем.
 - 1.3.2 По заказу потребителя в комплект поставки могут входить:
- кабель сигнальный длиной 3 м для соединения БСТН-101 и БС-101 при эксплуатации;
- кабель сигнальный поверочный длиной 1 м для соединения БСТН-101 и БС-101 при проведении поверки;
- преобразователь интерфейса ПИ-100 для подключения блока к ПЭВМ при проведении поверки;
- поверочное приспособление обеспечивающее защиту БСТН-101 при проведении поверки;
- программное обеспечение «DWPTest», предназначенное для настройки, градуировки и поверки блока;
- розетка кабельная СН6П-1-10/14/ОНЦ-БС-1-10/14 для монтажа кабеля связи с ПЭВМ на объекте.

Кабель связи с ПЭВМ в комплект поставки не входит, монтируется потребителем с помощью кабельной розетки из комплекта поставки.

1.4 Устройство и работа

1.4.1 Блок представляет собой функционально и конструктивно законченное устройство.

Габаритные и присоединительные размеры технических средств блока приведены в приложении A.

- 1.4.1.1 БСТН-101 состоит из:
- счетчика на основе He-3 для преобразования потока тепловых нейтронов в электрические импульсы;
 - усилителя-формирователя;
 - высоковольтного преобразователя для питания счетчика;
 - дискриминатора для отбора по амплитуде импульсов, поступающих с усилителя;
- процессорного модуля для расчета плотности потока и передачи данных через интерфейс RS-485.
 - 1.4.1.2 БС-101 включает в себя:
 - плату нейтронного блока;
 - плату предусилителя;
 - плату программирования;
 - плату фильтра.

Для крепления БС-101 используется кронштейн.

- 1.4.2 Принцип действия блока основан на преобразовании энергии, выделяющейся при захвате нейтрона ядром He-3, в электрические импульсы.
- БС-101 обрабатывает и преобразует измерительную информацию, поступающую на плату нейтронного блока в виде последовательности статистически распределенных нормализованных импульсов, в информацию о ППТН.

Полученная в результате преобразования информация имеет формат данных, определенный протоколом обмена данными DiBUS, обеспечивающий возможность её передачи внешнему устройству обработки информации.

1.5 Маркировка и пломбирование

- 1.5.1 На корпуса технических средств блока нанесены следующие обозначения:
- 1.5.1.1 На корпус БСТН-101 нанесены следующие маркировочные обозначения:
- товарный знак или обозначение предприятия- изготовителя;
- условное обозначение блока, куда входит БСТН-101;
- условное обозначение БСТН-101;
- порядковый номер БСТН-101 по системе нумерации предприятия- изготовителя;
- год изготовления;
- знак «Опасность поражения электрическим током» по ГОСТ 12.4.026-2015.
- 1.5.1.2 На корпус БС-101 нанесены следующие маркировочные обозначения:
- товарный знак или обозначение предприятия- изготовителя,
- условное обозначение блока, куда входит БС-101;
- условное обозначение БС-101;
- порядковый номер БС-101 по системе нумерации предприятия- изготовителя;
- знак утверждения типа средств измерений,
- год изготовления:
- степень защиты оболочек БС-101 (IP);
- знак «Опасность поражения электрическим током» по ГОСТ 12.4.026-2015.
- 1.5.2 Место и способ нанесения маркировки на технические средства, входящие в состав блока, соответствуют конструкторской документации.
- 1.5.3 Все технические средства, входящие в состав блока, опломбированы в соответствии с конструкторской документацией.

1.6 Упаковка

1.6.1 Упаковка блока производится согласно требованиям категории КУ-3 по ГОСТ 23170-78 для группы III, вариант защиты ВЗ-10, вариант упаковки ВУ-5 в соответствии ГОСТ 9.014-78.

Примечание — Блок может поставляться с вариантом защиты по типу ВЗ-0 и вариантом упаковки ВУ-0 в соответствии с договором на поставку.

1.6.2 Упаковка производиться в закрытых вентилируемых помещениях с температурой окружающего воздуха от +15 до +40 °C и относительной влажностью до 80 % при +20 °C и содержанием в воздухе коррозионно-активных агентов, не превышающих установленного для атмосферы типа 1 ГОСТ 15150-69.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Блок сохраняет свою работоспособность в условиях указанных в 1.2.9.
- 2.1.2 Блок может эксплуатироваться с устройствами обработки информации, имеющими соответствующий интерфейс связи и обеспечивающий блок необходимым напряжением питания.
 - 2.1.3 При эксплуатации не допускается:
- использование блока на электрических подстанциях среднего (6-35 kB) и высокого (выше 35 кВ) напряжения;
- использование блока как составных частей электрических установок значительной мощности;
 - подключение блока к контуру сигнального заземления;
- пользование мобильными радиотелефонными системами на расстоянии менее 10 м от места расположения блока.

2.2 Подготовка изделия к использованию

- 2.2.1 Для подготовки блока к использованию:
- выполнить монтаж БС-101;
- установить БСТН-101 в измерительную емкость (замедлитель) как показано на рисунке А.4;
- подключить БСТН-101 к разъёму «БСТН-101» БС-101 с помощью сигнального кабеля по схеме приложения Б;
- подключить кабель связи к разъёму «СВЯЗЬ» БС-101 и к устройству обработки информации; кабель связи монтируется потребителем с использованием входящей в комплект поставки кабельной розетки типа СН6П-1-10/14/ОНЦ-БС-1-10/14 в соответствии со схемой электрической соединений приложения Б и схемой распайки кабеля приложения В;
- заземлить БС-101 посредством электрического соединения клеммы (винта заземления) с контуром заземления;
 - подать питающее напряжение.

2.3 Использование изделия

2.3.1 Блок работает без управляющих воздействий. Измеренная величина выдается по запросу устройства обработки информации, к которому подключен блок.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

- 3.1.1 Техническое обслуживание проводится с целью обеспечения правильной и длительной работы блока.
- 3.1.2 Техническое обслуживание подразделяется на текущее техническое обслуживание и периодическое техническое обслуживание.

3.2 Меры безопасности

3.2.1 Перед началом работы необходимо ознакомиться с настоящим руководством по эксплуатации.

- 3.2.2 Все работы, связанные с эксплуатацией блока и проведением поверки необходимо выполнять в соответствии с:
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
- СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)».
- 3.2.3 Все подключения и отключения кабелей следует производить только при выключенном питании. При использовании блока в составе информационно-измерительных комплексов, систем и установок допускается «горячее» подключение и отключение кабелей, т.е. без выключения блока.

3.3 Порядок технического обслуживания

- 3.3.1 Техническое обслуживание подразделяется на текущее техническое обслуживание и периодическое техническое обслуживание.
 - 3.3.2 Текущее техническое обслуживание
- 3.3.2.1 Текущее техническое обслуживание производится при регулярной эксплуатации и состоит в осмотре блока для своевременного обнаружения и устранения факторов, которые могут повлиять на его работоспособность и безопасность.
- 3.3.2.2 Рекомендуются следующие основные виды и сроки проведения текущего технического обслуживание:

 - внешняя чистка (дезактивация) 1 раз в год.
- 3.3.2.3 Внешняя чистка (дезактивация) проводится в соответствии с регламентом работ, действующем на предприятии:
- наружные поверхности блока дезактивируются растворами 1) и 2) по 1.2.17, после обработки поверхности ветошью, смоченной в дезактивирующем растворе, необходимо обтереть поверхности ветошью, смоченной в дистиллированной воде, а затем просушить фильтровальной бумагой;
- разъемы кабельных выводов (кроме разъема «БСТН-101») дезактивируются раствором 3) по 1.2.17, дополнительной обработки дистиллированной водой и просушки фильтровальной бумагой не требуется, норма расхода раствора 3) 10 мл на одну операцию.

Сухая чистка проводится с любой периодичностью.

При проведении дезактивации блок должен быть отключен от источника питания.

3.3.3 Периодическое техническое обслуживание

Периодическое техническое обслуживание заключается в периодической поверке.

4 МЕТОДИКА ПОВЕРКИ

4.1 Общие требования

- 4.1.1 Поверку блоков проводят юридические лица или индивидуальные предприниматели, аккредитованные в установленном порядке в области обеспечения единства измерений. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются действующей нормативной базой.
- 4.1.2 Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации блоки.

Первичная поверка производится при выпуске вновь произведенных блоков и после их ремонта.

Периодическая поверка производится при эксплуатации блоков.

4.1.3 Интервал между поверками составляет 24 месяца.

4.2 Операции и средства поверки

4.2.1 При проведении поверки должны выполняться операции, указанные в таблице 4.1.

Таблица 4.1 – Перечень операций при проведении поверки

	Номер пункта	Проведение операций при		
Наименование операции	документа по поверке	первичной поверке	периодической поверке	
Внешний осмотр	4.5.1	Да	Да	
Опробование	4.5.2	Да	Да	
Определение относительной погрешности измерений плотности потока тепловых нейтронов	4.5.3	Да	Да	
Оформление результатов поверки	4.6	Да	Да	

4.2.2 При проведении поверки применяются основные и вспомогательные средства поверки, приведенные в таблице 4.2.

Таблица 4.2 – Перечень основных и вспомогательных средств поверки

Номер пункта документа по поверке	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
4.5	Установка поверочная нейтронного излучения с плутонием — берилиевым (или калифорниевым) источником типа УКПН-2М-Д, аттестованная в качестве рабочего эталона плотности потока тепловых нейтронов
4.5	ПЭВМ с комплектом технических средств, обеспечивающих работу по порту RS-485, и с программным обеспечением «DWPTest» ФВКМ.004001
4.5	Поверочное приспособление ФВКМ.301318.133
4.5	Кабель сигнальный поверочный ФВКМ.685636.082
4.5	Преобразователь интерфейса ПИ-100 ФВКМ.467110.009

 Π р и м е ч а н и е — Возможно применение других средств поверки с аналогичными характеристиками, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

4.3 Требования безопасности

- 4.3.1 При поверке выполняют требования безопасности, изложенные в 3.2 и в документации на применяемые средства поверки и оборудование.
- 4.3.2 К проведению поверки блоков допускаются лица, аттестованные в качестве поверителей в установленном порядке.

4.4 Условия проведения поверки и подготовка к ней

- 4.4.1 Поверка проводится при соблюдении следующих условий:
- температура окружающего воздуха +(20 ±5) °C;
- относительная влажность воздуха...... от 30 до 80 %;
- атмосферное давление от 84,0 до 106,7 кПа.
- 4.4.2 Поверка проводится с использованием поверочного приспособления, для размещения в нём БСТН-101.

Допускается вместо поверочной установки УКПН-2М-Д применять аналогичную с источниками нейтронов Pu-Be или Cf-252, создающую плотность потока тепловых нейтронов в диапазоне от 3 до $130 \, \text{c}^{-1} \cdot \text{cm}^{-2}$.

Поверочная установка должна быть аттестована по ППТН в качестве рабочего эталона с погрешностью δ_3 не более ± 15 %.

4.5 Проведение поверки

4.5.1 Внешний осмотр

При внешнем осмотре устанавливается:

- соответствие комплектности блока;
- наличие эксплуатационной документации;
- отсутствие дефектов, влияющих на работу блока.

Результаты внешнего осмотра считаются положительными, если: блок поступил в поверку в комплекте с паспортом ФВКМ.418252.004ПС, состав соответствует указанному в разделе 3 ФВКМ.418252.004ПС, отсутствуют дефекты, влияющие на работу блока.

4.5.2 Опробование

При опробовании необходимо:

- установить БСТН-101 в поверочное приспособление;
- подключить БСТН-101 к разъёму «БСТН-101» БС-101 с помощью поверочного сигнального кабеля по схеме приложения Б;
- подключить преобразователь интерфейса ПИ-100 (из комплекта поставки) к ПЭВМ и к разъему «СВЯЗЬ» БС-101;
 - включить ПЭВМ, запустить программное обеспечение «DWPTest»;
- разместить БСТН-101, установленный в поверочное приспособление, перпендикулярно оси пучка на приборном столике поверочной установки, совместив центр детектора БСТН-101 с осью нейтронного пучка (эффективный центр детектора показан на рисунке А.3);
- убедится в том, что осуществляется счёт импульсов при облучении БСТН-101 тепловыми нейтронами;
- убедиться, что в программе «DWPTest» отображаются рабочие значения (из свидетельства о первичной поверке) напряжения на счётчике в диапазоне (1200 1300) В; «мёртвого времени» в диапазоне $(2,5-3,0)\cdot 10^{-5}$.

4.5.3 Определение основной относительной погрешности измерений плотности потока тепловых нейтронов

- 4.5.3.1 Определение основной относительной погрешности измерений ППТН выполняется в одной точке диапазона измерений в соответствии с ГОСТ 8.355-79.
- 4.5.3.2 Основная относительная погрешность измерений определяется путём облучения БСТН-101 в точке градуировочной линейки поверочной установки с аттестованным значением ППТН из диапазона значений от 20 до $120 \, \mathrm{c}^{-1} \cdot \mathrm{cm}^{-2}$ и последующим расчётом.

Вначале определяются показания блока в прямом потоке тепловых нейтронов без кадмиевого экрана. Отсчёт показаний производится при статистической неопределённости ППТН менее 3 % и времени экспозиции более 100 с. После каждого измерения производится сброс тренда. Результат измерения определяется как среднее арифметическое значение по пяти показаниям блока.

Затем определяются фоновые показания блока в той же геометрии с помещенным между источником и БСТН-101 кадмиевым экраном. Отсчёт показаний производится при статистической неопределённости ППТН менее 3 % и времени экспозиции более 100 с. После каждого измерения производится сброс тренда. Результат измерения определяется как среднее арифметическое значение по пяти показаниям блока.

Значение ППТН рассчитывается как разность показаний блока в прямом потоке тепловых нейтронов и фоновых показаний.

4.5.3.3 Определить относительную погрешность измерений ППТН δ , в процентах, по формуле

$$\delta = \frac{P - P_{9}}{P_{3}} \cdot 100 \tag{4.1}$$

где Р – рассчитанное значение ППТН в поверяемой точке;

 $\boldsymbol{P}_{_{\boldsymbol{9}}}$ – эталонное значение ППТН в точке измерения.

4.5.4.4 Определить основную относительную погрешность измерений ППТН δ , в процентах, по формуле

$$\delta = 1.1 \sqrt{\delta^2 + \delta_3^2} \tag{4.2}$$

где δ – относительная погрешность измерения;

- $\delta_{_{3}}-$ погрешность поверочной установки по ППТН (из свидетельства поверочной установки);
- 4.5.5.5 Блок признаётся годным, если значения основной относительной погрешности измерений ППТН находятся в пределах ± 30 %.

4.6 Оформление результатов поверки

4.6.1 Положительные результаты поверки оформляются выдачей свидетельства о поверке по форме, установленной в приказе Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815. Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

4.6.2 Блок с отрицательными результатами поверки к применению запрещается и выдается извещение о непригодности установленной в приказе Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815 формы с указанием причин непригодности.

5 ТЕКУЩИЙ РЕМОНТ

- 5.1 Текущий ремонт блока заключается в восстановлении поврежденных кабелей и разъемов.
- 5.2 Блок, в случае выхода из строя, подлежит ремонту или замене (в течение гарантийного срока) на предприятии изготовителе.

6 ХРАНЕНИЕ

- 6.1 Блок до введения в эксплуатацию следует хранить в отапливаемом и вентилируемом помещении:
- в упаковке предприятия-изготовителя в условиях хранения $1(\Pi)$ по ГОСТ 15150-69 при температуре окружающего воздуха от +5 до +40 °C и относительной влажности до 80 % при +25 °C;
- без упаковки в условиях атмосферы типа I по ГОСТ 15150-69 при температуре окружающего воздуха от +10 до +35 °C и относительной влажности до 80 % при +25 °C.
- 6.2 В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Место хранения должно исключать попадание прямого солнечного света на блок.

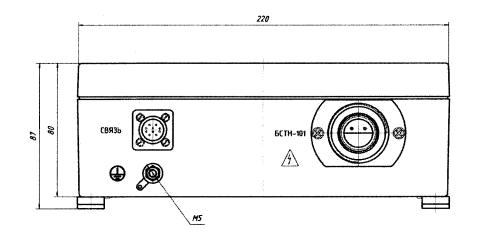
6.3 Срок сохраняемости блока в упаковке предприятия- изготовителя - не менее 3 лет.

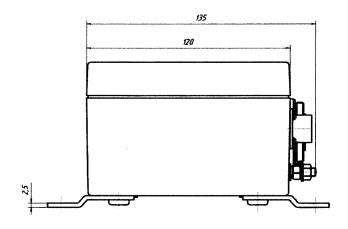
7 ТРАНСПОРТИРОВАНИЕ

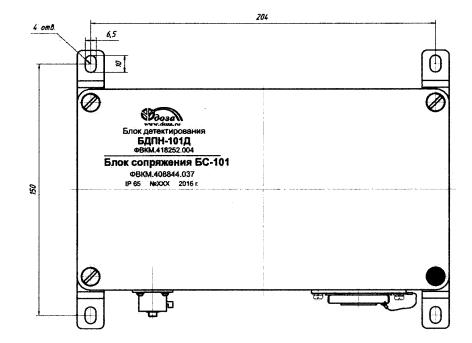
- 7.1 Блок в упаковке предприятия- изготовителя может транспортироваться всеми видами транспорта на любые расстояния общим временем транспортировки:
 - перевозка по железной дороге должна производиться в крытых чистых вагонах;
- при перевозке воздушным транспортом ящики должны быть размещены в герметичном отапливаемом отсеке;
- при перевозке водным и морским транспортом ящики должны быть размещены в трюме.
- 7.2 Размещение и крепление ящиков на транспортных средствах должны обеспечивать устойчивое положение при следовании в пути, отсутствие смещения и ударов друг о друга.
- 7.3 При погрузке и выгрузке должны соблюдаться требования надписей, указанных на транспортной таре.
 - 7.4 Условия транспортирования:
 - температура от минус 50 до плюс 55 °C;
 - влажность до 98 % при +35 °C;

8 УТИЛИЗАЦИЯ

- 8.1 По истечении полного срока службы блока (его составных частей), перед отправкой на ремонт или для проведения поверки необходимо провести обследование на наличие радиоактивного загрязнения поверхностей. Критерии для принятия решения о дезактивации и дальнейшем использовании изложены в разделе 3 ОСПОРБ-99/2010.
- 8.2 Дезактивацию блока следует проводить в соответствии с 3.3.2.3 в тех случаях, когда уровень радиоактивного загрязнения поверхностей блока (в том числе доступных для ремонта) может быть снижен до допустимых значений в соответствии с разделом 8 НРБ-99/2009 и разделом 3 ОСПОРБ-99/2010.
- 8.3 В соответствии с разделом 3 СПОРО-2002 допускается в качестве критерия о дальнейшем использовании блока, загрязненного неизвестными гамма- излучающими радионуклидами, использовать мощность поглощённой дозы на расстоянии 0,1 м от его поверхности.
- 8.4 В случае превышения мощности дозы в 1 мкГр/ч (1 мкЗв/ч) над фоном после дезактивации или превышения допустимых значений уровня радиоактивного загрязнения поверхностей к блоку предъявляются требования как к радиоактивным отходам (РАО).


РАО подлежат классификации и обращению (утилизации) в соответствии с разделом 3 СПОРО-2002.


8.5 Блок, не допущенный к применению после дезактивации, подлежит ремонту или замене. Непригодный для дальнейшей эксплуатации блок, уровень радиоактивного загрязнения поверхностей которого превышает допустимые значения, должен быть демонтирован, чтобы исключить возможность его дальнейшего использования, и направлен на специально выделенные участки в места захоронения промышленных отходов.


Блок с истекшим сроком службы, допущенный к использованию после дезактивации, подвергается обследованию технического состояния. При удовлетворительном техническом состоянии блок подлежит поверке и определению сроков дальнейшей эксплуатации.

Приложение A (справочное)

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

1. Материал корпуса - сплав АМГ. 2. Материал винта заземления - Сталь 20.

Рисунок А.1-Блок сопряжения БС-101

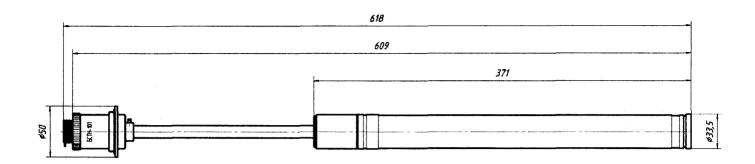
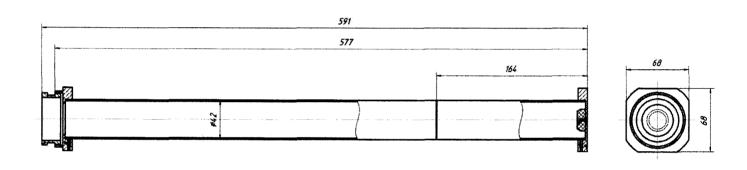



Рисунок А.2 – Блок счетчика тепловых нейтронов БСТН-101

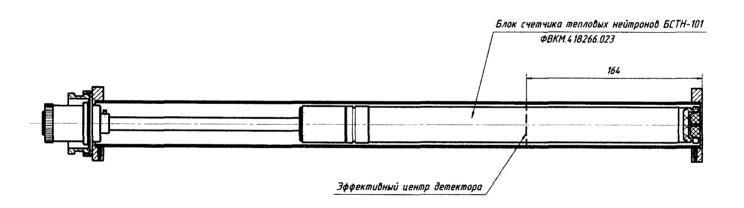


Рисунок А.3 – Поверочное приспособление

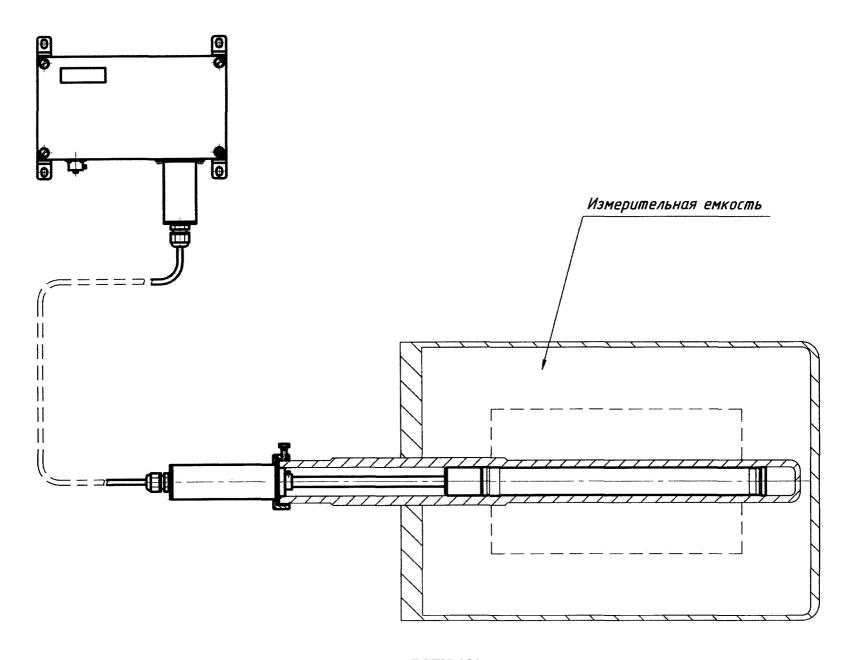


Рисунок А.4 – Установка БСТН-101 в измерительную емкость

СХЕМА ЭЛЕКТРИЧЕСКАЯ СОЕДИНЕНИЙ

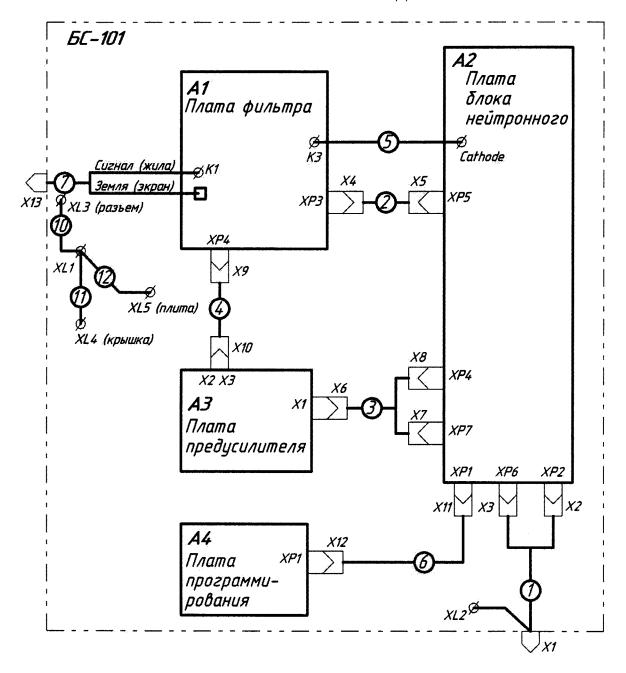


Рисунок Б.1 – Блок сопряжения БС-101 Схема электрическая соединений

Приложение В (обязательное)

РАСПАЙКА РАЗЪЕМА

Разъем: Вилка блочная СН6-1-10/14-В1-1-В

Цепь	Конт.
Data+	1
Data-	2
918B	3
	4
	5
GND	6
Аналог.вых.	7
GND аналог.вых	8
	9
Корпус	10

Приложение Γ (обязательное)

ИНСТРУКЦИЯ ПО ИСПОЛЬЗОВАНИЮ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ «DWPTest»

Содержание

Г.1 Назначение программы	19
Г.2 Условия выполнения программы	19
Г.3 Входные и выходные данные	20
Г.4 Выполнение программы	20
Г.4.1 Структура, установка и запуск программы	20
Г.4.2 Описание работы с программой	
Г.4.2.1 Настройка программы	20
Г.4.2.2 Работа с блоком	21
Г.5 Защита программы	24
Г.6 Контроль идентификационных данных	

Настоящая инструкция описывает назначение и возможности программного обеспечения «DWPTest» ФВКМ.004001 версия исполнения 02.01.2.00.03 (далее - программы) для работы с блоками, а также порядок работы с этой программой.

Г.1 НАЗНАЧЕНИЕ ПРОГРАММЫ

Программа предназначена для работы с блоками, использующими последовательный асинхронный канал связи и корпоративный протокол обмена информацией DiBUS для инструментальных сетей предприятия НПП «Доза».

Программа позволяет:

- опрашивать подключенные блоки и получать от них ответы в автоматическом режиме;
- устанавливать и сохранять пользовательские настройки при поверке и получать данные от блоков.

Программа носит служебный характер, в измерениях не участвует и на метрологические характеристики блоков в процессе измерений не влияет.

Программа поддерживает русский язык интерфейса.

Г.2 УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

Г.2.1 Системные требования

Минимальные требования к программному и аппаратному обеспечению:

- операционная система Windows ME/2000/XP/Windows 7;
- процессор Pentium с тактовой частотой 120 МГц и более производительный;
- оперативная память $2\Gamma 6$;
- свободное пространство на жестком диске от 60 МБ;
- монитор от 15 дюймов с разрешением не менее 800×600;
- мышь;
- последовательный порт.

Г.2.2 Подключение блоков к ПЭВМ

Для связи с блоками используется тип связи: RS-485.

Г.З ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ

Входными данными для работы программы является измерительная и сопутствующая информация, выдаваемая блоком оператору по запросу программы.

Выходными параметрами являются значения измерительных, настроечных и сопутствующих параметров, передаваемых авторизованным пользователем в блок.

Г.4 ВЫПОЛНЕНИЕ ПРОГРАММЫ

Г.4.1 Структура, установка и запуск программы

В состав программы входят следующие файлы:

- DWPTest.exe запускаемый файл;
- при первом запуске программы, в системном каталоге Microsoft Windows создаётся файл «dwpt.ini», в котором сохраняются настройки программы.

Программа не требует инсталляции. Для запуска программы необходимо запустить файл *DWPTest.exe*, скопировав все файлы, предоставляемые изготовителем, в выбранный каталог на ПЭВМ.

Г.4.2 Описание работы с программой

Г.4.2.1 Настройка программы

Перед началом работы необходимо подключить блок к ПЭВМ в соответствии с 2.2. Рабочее окно программы после запуска приведено на рисунке Г.1.

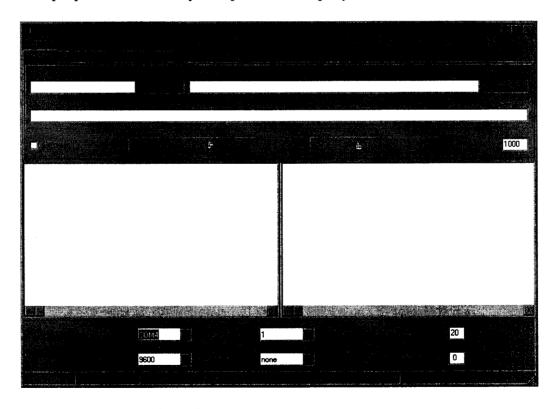


Рисунок Г.1 – Основное окно программы после запуска

Для работы с блоком необходимо в рабочем окне программы перейти к вкладке «Регистры» в соответствии с рисунком Г.2.

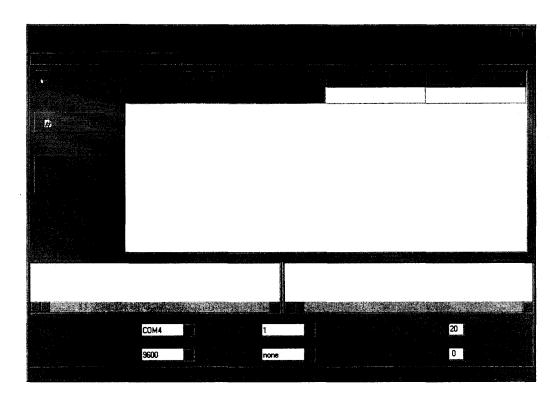


Рисунок Г.2 – Вкладка «Регистры»

Нажать кнопку «ВЫБРАТЬ ПРИБОР».

Вкладка «Регистры» позволяет проводить работу путем опроса подключенного блока и получения ответов от него в автоматическом режиме. Режим адаптирован для пользователей, не имеющих специальных знаний и навыков для работы с интерфейсами передачи данных.

Перед началом работы с блоком необходимо провести настройку асинхронного коммуникационного порта, для этого в нижней части рабочего окна программы необходимо:

- 1) выбрать из выпадающего списка «**Порт**» номер асинхронного порта по умолчанию установлен порт COM1;
- 2) выбрать из выпадающего списка «Скорость» скорость обмена данными по умолчанию скорость составляет $9600 \ \textit{бum/c}$;
 - 3) выбрать из выпадающего списка «Стоп-бит» количество стоп-битов l;
- 4) выбрать из выпадающего списка **«Бит паритета»** (режим контроля четности) по умолчанию бит паритета отсутствует *none*;
- 5) установить параметр «Прием: межбайт. интервал, мс» временной интервал между принимаемыми байтами одного пакета по умолчанию интервал равен 20 мс;
- 6) установить параметр «Посылка: межбайт. интервал, мс» временной интервал между посылаемыми байтами одного пакета по умолчанию интервал равен 0 мс.

Установленные параметры работы коммуникационного порта автоматически сохраняются программой в файле.

Г.4.2.2 Работа с блоком

Для загрузки параметров для общего пользования следует выбрать подключаемый блок, для этого необходимо нажать кнопку «ВЫБРАТЬ ПРИБОР» и в открывшемся окне, показанном на рисунке Γ .3, выбрать файл «БДПН_101-поверка.rst», затем нажать кнопку «ОТКРЫТЬ».

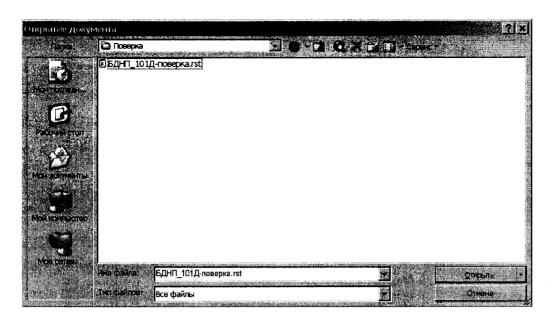


Рисунок Г.3 – Выбор файла приборного описания

Работа с блоком осуществляется в окне «Регистры» и позволяет пользователю вводить в блок определенные данные, настроечные коэффициенты или константы и выводится их текущее значение в соответствии с рисунком Г.4.

Для того чтобы ввести новое значение параметра необходимо дважды щелкнуть мышью в столбце «Новое значение» напротив выбранного параметра и ввести новое значение, затем нажать кнопку «В ПРИБОР». Новое значение параметра при этом будет передано и записано в блок.

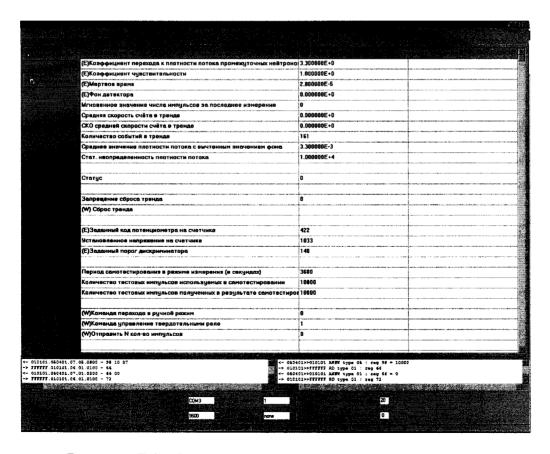


Рисунок Г.4 – Содержание регистра считываемых значений

В таблице Γ .1 описание параметров и регистров блока, где W — доступ регистра на запись, R — доступ регистра на чтение.

Таблица $\Gamma.1$ — Описание параметров и регистров блока

Регистр	Описание	Доступ	ЕЕпром	Комментарии
Коэффициент перехода к плотности потока тепловых нейтронов	Определяет физические свойства блока, устанавливается при калибровке	WR	+	
Коэффициент чувствительности	Определяет физические свойства блока, устанавливается при калибровке	WR	+	
Мертвое время	Определяет физические свойства блока, устанавливается при калибровке	WR	+	
Фон детектора	Определяет физические свойства блока, устанавливается при калибровке	WR	+	
Мгновенное значение числа импульсов за последнее измерение	Число импульсов за одно измерение. Получатся с детектора	R		
Средняя скорость счёта в тренде	Среднее число импульсов в тренде. Рассчитывается	R		
СКО средней скорости счёта в тренде	СКО средней скорости счёта в тренде. Рассчитывается блоком	R		
Количество событий в тренде	Текущее количество измерений исполь- зуемых для расчета	R		
Среднее значение плотности потока с вычтенным значением фона	Величина рассчитанная для данного тренда	R		
Статистическая неопределенность плотности потока	Величина, рассчитанная для данного тренда	R		
Фоновое значение плотности потока		R		
Запрещение сброса тренда		RW	+	
Сброс тренда		W		
Задать напряжение на счетчике	Устанавливает напряжение на счетчике	W	+	1000 – 1500 B
Установленное напряжение на счетчике		R		

Регистр	Описание	Доступ	ЕЕпром	Комментарии
Заданный порог дискриминатора	Задает порог сигнала	RW	+	0 – 1024 шага
Команда перехода в ручной режим	Позволяет получать импульсы с внутреннего генератора	W		1 – ручной режим 0 – автоматический режим
Отправить N кол-во импульсов	Отправляет п импульсов частотой 500 Гц	W		0 — 65000 В ручном режиме считывается блоком как измеренная величина
Количество полученных импульсов CPU	Количество посчитанных процессором импульсов	R		

Г.5 ЗАЩИТА ПРОГРАММЫ

Программа не предусматривает реализации каких-либо вычислительных преобразований с измерительными или иными принимаемыми и передаваемыми данными и в процессе измерений не участвует.

Процесс приема и передачи данных сопровождается проверкой целостности пакета данных как на стороне программы, так и подключаемых блоков.

Любое санкционированное или несанкционированное изменение программы, затрагивающее функционально значимые части, приводит к невозможности приема или передачи данных.

Информацией о целостности программы блока и установленных исходных параметров является неизменность считываемых установленных параметров, контролируемых оператором в процессе измерений, а также наличие файла — ключа доступа к установленным параметрам у авторизованного пользователя.

Г.6 КОНТРОЛЬ ИДЕНТИФИКАЦИОННЫХ ДАННЫХ ПРОГРАММЫ

Для получения цифровых идентификационных данных программы «DWPTest», предустановленной в папке C:\Program Files\, используется алгоритм вычисления цифрового идентификатора путем применения программного модуля md5.exe с помощью программы CMD.exe.

Для запуска программы получения цифровых идентификационных данных:

- войти в папку C:\Program Files\;
- запустить файл CMD.exe;
- перейти в папку: C:\Program Files\DWPTest;
- нажать «ENTER»;

- командная строка должна принять вид: C:\Program Files\DWPTest>;
- ввести команду: md5.exe DWPTest.exe;
- командная строка должна принять вид: C:\Program Files\DWPTest > md5.exe DWPTest.exe;
- нажать «ENTER»;
- появится код внешней проверки, т.е. программная строка должна принять вид:
 MD5 Hash Computing For Files. Writen By RSA Data Security, Compiled By Lenik.
 MD5 (DWPTest.exe) = 3AC5CFE04829FF4E9074F771168D0EBA0
 C:\Program Files\DWPTest >