СОГЛАСОВАНО Генеральный директор Автопрогресс—М»
А. С. Никитин

Сканеры лазерные серии Imager 5010

Методика поверки

MΠ AΠM 08-17

1 Методика поверки

Настоящая методика поверки распространяется на сканеры лазерные серии Imager 5010, производства «Zoller+Fröhlich GmbH», Германия (далее – сканеры) и устанавливает методику их первичной и периодической поверки.

Интервал между периодическими поверками - 1 год.

2 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1.

NoNo	Наименование операции	Проведение операций при	
пункта		первичной поверке	периодической поверке
8.1.	Внешний осмотр, идентификация программного обеспечения	Да	Да
8.2.	Опробование	Да	Да
8.3.	Определение абсолютной погрешности измерений рас- стояний	Да	Да
8.4.	Определение абсолютной погрешности измерений угла	Да	Да

3 Средства поверки

При проведении поверки должны применяться эталоны, приведённые в таблице 2.

Таблица 2.

№ пункта	Наименование эталонов и их основные метрологические	
документа	и технические характеристики	
по поверке		
8.1.	Эталоны не применяются	
8.2.	Эталоны не применяются	
8.3.	Тахеометр электронный 1 разряда по ГОСТ Р 8.750-2011	
8.4.	Тахеометр электронный типа Та5 по ГОСТ Р 51774-2001	

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

4 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на сканеры, имеющие достаточные знания и опыт работы с ними.

5 Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на сканеры, поверочное оборудование, правилам по технике безопасности, которые действуют на месте проведения поверки и правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

6 Условия проведения поверки

При проведении поверки в лабораторных условиях должны соблюдаться следующие нормальные условия измерений:

- температура окружающей среды, °С (20±5)
- относительная влажность воздуха, % не более 80
- изменение температуры окружающей среды во время измерений, °С/чне более 2

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов ветра, защите сканера от прямых солнечных лучей и при температуре окружающей среды от минус 10 до плюс 45 °C.

7 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства поверки;
- сканеры и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией.

8 Проведение поверки

8.1 Внешний осмотр, идентификация программного обеспечения

При внешнем осмотре должно быть установлено соответствие сканера следующим требованиям:

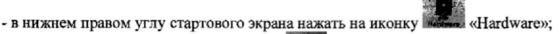

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики поверяемого сканера;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на поверяемый сканер;
- идентификационные данные программного обеспечения (далее ПО) должны соответствовать данным приведённым в таблице 3.

Таблица 3.

Идентификационное наименование ПО	Firmware 8.9.0.19607	Z+FLaserControl
Номер версии (идентификационный номер) ПО, не ниже	8.9.0.19607	8.1.3.6673

Идентификация встроенного ПО «Firmware 8.9.0.19607» осуществляется через интерфейс пользователя дисплея, расположенного на боковой стороне поверяемого сканера, в следующей последовательности:

- включить сканер;

- в появившемся меню нажать на иконку «Firmware»;
- в появившемся окне отображается наименование и версия встроенного ПО.

Идентификация ПО «Z+FLaserControl» осуществляется через интерфейс пользователя путём открытия подменю «About Z+FLaserControl» во вкладке «Справка». В открывшемся окне отображается наименование ПО и номер его версии.

8.2 Опробование

При опробовании должно быть установлено соответствие поверяемого сканера следующим требованиям:

- отсутствие качки и смещений неподвижно соединенных деталей и элементов;
- плавность и равномерность движения подвижных частей;
- правильность взаимодействия с комплектом принадлежностей;
- работоспособность всех функциональных режимов и узлов.

8.3 Определение абсолютной погрешности измерений расстояний

Абсолютная погрешность измерений расстояний определяется путем многократного (не менее 5) измерения не менее 3 контрольных расстояний (базисов), действительные длины которых равномерно расположены в заявленном диапазоне измерений расстояний.

Определение абсолютной погрешности измерений расстояний проводить в следующей последовательности:

- разместить в зоне проведения испытаний штатив для установки сканера;
- разместить на штативе эталонный тахеометр;

- разместить в зоне проведения испытания штатив для установки мишени. Штатив необходимо установить на расстоянии близком (но не более) к верхнему пределу измерений расстояний сканера.
- установить на него квадратный щит-мишень с чёрно-белой маркой размером не менее (0,3×0,3) м. При помощи уровня убедиться в том, что щит-мишень установлен в вертикальной плоскости. Располагать щит-мишень следует к штативу сканера таким образом, чтобы плоскость щита-мишени была перпендикулярна направлению на штатив;
- разместить в геометрическом центре щита-мишени (чёрно-белой марки) отражательную призму;
- включить эталонный тахеометр, перевести его в отражательный режим измерений расстояний;
- измерить эталонным тахеометром расстояние R_{дейст} до призмы на щите-мишени. Результат занести в протокол;
 - выключить и демонтировать эталонный тахеометр с его трегера. Убрать призму с мишени;
 - установить на штатив на оставленный трегер поверяемый сканер;
- через интерфейс пользователя сканера выставить качество и разрешение сканирования не ниже уровня «высокое» и затем запустить процедуру сканирования. Дождаться окончания сканирования;
 - сохранить данные, полученные при сканировании;
 - повторить вышеописанные операции по сканированию щита-мишени не менее 10 раз;
- по завершению процесса сканирования, снять с трегера сканер и снова установить на его место эталонный тахеометр;
- снова разместить в геометрическом центре щита-мишени (чёрно-белой марки) отражательную призму;
- включить эталонный тахеометр, перевести его в отражательный режим измерений расстояний;
- измерить эталонным тахеометром расстояние $R_{\text{дейст кон}}$ до призмы на щите-мишени. Результат измерений не должен отличаться от значения $R_{\text{дейст}}$ более чем на величину погрешности, приписанную эталонном тахеометру. В случае если $R_{\text{дейст кон}}$ отличается от значения $R_{\text{дейст}}$ более чем на величину погрешности, приписанную эталонном тахеометру, повторить описанные выше операции сканирования заново;
- повторить вышеописанные операции для ещё как минимум двух контрольных расстояний, действительные длины которых равномерно расположены в заявленном диапазоне измерения расстояний поверяемого сканера.
 - скачать и обработать на ПК данные полученные при сканировании;
- локализовать через ПО точки облака, относящиеся к отсканированному щиту-мишени.
 Провести построение плоскости минимум по 4-м точкам. Построить на полученной плоскости точку, соответствующую геометрическому центру щита-мишени (чёрно-белой марки), методом проекции;
 - произвести вычисление расстояния R_{изм і і} на построенную точку;
- определить абсолютную погрешность измерений расстояний (при доверительной вероятности 0.95) ΔR по формуле:

$$\Delta R_{j} = (\frac{\sum_{i=1}^{n} R_{u_{3Mij}}}{n} - R_{\partial e \bar{u} c m j}) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} (R_{u_{3Mij}} - \frac{\sum_{i=1}^{n} R_{u_{3Mij}}}{n})^{2}}{n-1}},$$

где ΔR_i - абсолютная погрешность измерений j-го расстояния, мм;

*R*_{дейст j} - эталонное значение j-го расстояния, мм;

 $R_{u_{3M}ij}$ - измеренное значение j-го расстояния, i-м приемом, мм

и - число приемов измерений ј-ого расстояния.

Значение абсолютной погрешности измерений расстояний (при доверительной вероятности 0,95) не должно превышать $\pm 2 \cdot (1+10\cdot 10^{-6}\cdot D)$ мм, где D – измеренное расстояние, мм

8.4 Определение абсолютной погрешности измерений угла

Абсолютная погрешность измерений угла определяется на контрольных точках путем многократного измерения угла между ними.

Определение абсолютной погрешности измерений угла проводить в следующей последовательности:

- разместить в зоне проведения поверки штатив для установки сканера;
- разместить на штативе эталонный тахеометр;
- разместить в зоне проведения испытаний два штатива для установки мишеней. Штативы необходимо установить на приблизительно одинаковых расстояниях, но не более 50 м от сканера, таким образом, чтобы горизонтальный угол между ними составил (90±10)°.
- установить на них квадратные щиты-мишени с чёрно-белыми марками размером не менее (0,3×0,3) м. При помощи уровня убедиться в том, что щиты-мишени установлены в вертикальной плоскости. Располагать щиты-мишени следует к штативу сканера таким образом, чтобы плоскость щитов-мишеней была перпендикулярна направлению на штатив;
 - включить эталонный тахеометр;
- измерить им горизонтальный/вертикальный угол V_0 между геометрическими центрами марок на щитах-мишенях. Результат занести в протокол;
 - выключить и демонтировать эталонный тахеометр с его трегера;
 - установить на штатив на оставленный трегер поверяемый сканер;
- через интерфейс пользователя сканера выставить качество и разрешение сканирования не ниже уровня «высокое» и затем запустить процедуру сканирования. Дождаться окончания сканирования;
 - сохранить данные полученные при сканировании;
 - повторить вышеописанные операции по сканированию щитов-мишеней не менее 5 раз;
- по завершению процесса сканирования, снять с трегера сканер и снова установить на его место эталонный тахеометр;
- измерить эталонным тахеометром горизонтальный/вертикальный угол $V_{\theta \, \kappa o n}$ между геометрическими центрами марок на щитах-мишенях. Результат измерений не должен отличаться от значения V_{θ} более чем на величину погрешности, приписанную эталонном тахеометру. В случае если $V_{\theta \, \kappa o n}$ отличается от значения V_{θ} более чем на величину погрешности, приписанную эталонном тахеометру, повторить описанные выше операции сканирования заново;
- повторить вышеописанные операции при значении горизонтального угла между щитамимишенями (180±10)°;
 - скачать и обработать на ПК данные, полученные при сканировании;
- локализовать через ПО точки облака, относящиеся к отсканированным щитам-мишеням.
 Провести построение плоскостей минимум по 4-м точкам. Построить на полученным плоскостям точки, соответствующие геометрическими центрами марок на щитах-мишенях, методом проекции;
- произвести вычисление горизонтального/вертикального угла V_{ij} между построенными токами;
- определить абсолютную погрешность измерений горизонтального/вертикального угла (при доверительной вероятности 0,95) ∆_{vi} по формуле:

$$\Delta_{vi} = \left(\frac{\sum_{i=1}^{n} V_{ij}}{n} - V_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(V_{ij} - \frac{\sum_{i=1}^{n} V_{ij}}{n}\right)^{2}}{n - 1}},$$

где ∆vi - абсолютная погрешность измерений угла, °;

 V_{0j} — значение j-ого горизонтального/вертикального угла, определённое эталонным тахеометром, °;

 V_{ij} - значение j-ого горизонтального/вертикального угла, определённое по скане-

py, °,

и - число приемов измерений j-ого горизонтального/вертикального угла.

Значение абсолютной погрешности измерений угла (при доверительной вероятности 0,95) не должно превышать $\pm 0,014^{\circ}$.

9 Оформление результатов поверки

- 9.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 8 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями.
- 9.2. При положительных результатах поверки, сканер признается годным к применению и на него выдается свидетельство о поверке установленной формы.

Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) оттиска поверительного клейма.

9.3. При отрицательных результатах поверки сканер признается непригодным к применению и выдаётся извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс-М»

В.А. Лапшинов