ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Рефлектометры оптические серии КИВИ-7200

Назначение средства измерений

Рефлектометры оптические серии КИВИ-7200 (далее по тексту - рефлектометры) предназначены для измерений ослабления, длины (расстояния) до мест неоднородностей, оценки неоднородностей оптического кабеля, измерений средней мощности и ослабления оптического излучения в волоконно-оптических кабелях и оптических компонентах.

Описание средства измерений

Принцип действия рефлектометров основан на зондировании волоконно-оптической линии последовательностью коротких оптических импульсов и измерении параметров сигнала, отраженного от неоднородности, и сигнала обратного рассеяния, т.е. сигналов френелевского отражения и релеевского рассеяния. В результате обработки этих сигналов на дисплее прибора формируется рефлектограмма зондируемого световода, показывающая распределение ослабления по его длине и индицирующая наличие стыков и обрывов.

Прибор оборудован рядом портов:

- измерительный порт рефлектометра, может состоять из одного или двух оптических разъемов в зависимости от количества рабочих длин волн, определяемых видом модели прибора;
 - порт встроенного измерителя оптической мощности (дополнительная опция);
- порт источника оптического излучения (совмещен с измерительным портом рефлектометра).

Принцип действия измерителя оптической мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму.

Принцип действия источника оптического излучения основан на преобразовании электрического тока в оптическое излучение в полупроводниковых лазерах или светодиодах с применением схемы стабилизации мощности излучения; предусмотрен режим генерации непрерывного и модулированного оптического излучения.

Рефлектометры выполнены в виде переносного прибора в прямоугольном корпусе. Основные элементы управления прибором расположены на сенсорном экране передней панели.

Рефлектометры выпускаются в следующих модификациях: КИВИ-7211, КИВИ-7212, КИВИ-7213, КИВИ-7214, КИВИ-7221, КИВИ-7222, КИВИ-7231, КИВИ-7232, КИВИ-7233, КИВИ-7234, которые отличаются динамическим диапазоном и рабочими длинами волн.

Общий вид рефлектометров оптических серии КИВИ-7200 представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.

Рисунок 1 - Общий вид рефлектометров оптических серии КИВИ-7200

Рисунок 2 - Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

Программное обеспечение

Программное обеспечение (далее по тексту - ПО), входящее в состав рефлектометров, служит для выполнения функций определения параметров сигнала, сохранения и отображения на экране прибора информации в удобном для оператора виде.

Метрологически значимая часть ПО располагается в аппаратной части рефлектометров. Имеется защита измеренных данных от удаления или изменения путем выдачи предупреждающего сообщения о возможности удаления данного файла, содержащего результаты измерений. Внесение изменений в файл, содержащий результаты измерений, функционально невозможно. Запись ПО осуществляется в процессе производства. Доступ к аппаратной части рефлектометров исключен конструктивно. В целях предотвращения вскрытия корпуса рефлектометров произведено пломбирование. Замена версии ПО с целью расширения сервисных возможностей рефлектометра может производиться только в аккредитованных сервис-центрах фирмы - изготовителя.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	OTDR.exe
Номер версии (идентификационный номер) ПО	1.1 и выше
Цифровой идентификатор ПО	-

Метрологические и технические характеристики приведены в таблицах 2 - 5.

Таблица 2 - Метрологические характеристики рефлектометров оптических КИВИ-7210

Модификация рефлектометра оптического КИВИ-7210	КИВИ-7211	КИВИ-7212	КИВИ-7213	КИВИ-7214
Тип волокна	Одномодовое 9 / 125 мкм			
Рабочие длины волн, нм	1310±20/1550±20	1310±20/1550±20	1310±20/1550±20; 1625±10 (с фильтром)	1310±20/1550±20; 1625±10
Уровень выходной мощности оптического излучения в непрерывном режиме, дБм*, не менее	-11,5 / -11,5	-11,5 / -11,5	-11,5 / -11,5 / -11,5	-11,5 / -11,5 / -11,5
Нестабильность уровня выходной мощности оптического излучения в непрерывном режиме за 15 мин (после 15 минут прогрева), дБ, не более		±0,05		
Динамический диапазон измерений ослабления (при усреднении 3 мин, по уровню 98 % от максимума шумов, при длительности импульса				
20 мкс)**, дБ	27/26	28/26	28/26/26	28/26/26
Мертвая зона при измерении, м - ослабления - положения неоднородности	10,0/10,0 2,5/2,5	4,0/4,0 1,0/1,0	4,0/4,0/4,0 1,0/1,0/1,0	4,0/4,0/4,0 1,0/1,0/1,0
Длительность зондирующих импульсов, нс		5; 10; 30; 50; 100; 275; 1000; 2	500; 5000; 10000; 20000	, , ,
Диапазоны измеряемых длин, км	от 0 до 1,25; от 0 до 2,50; от 0 до 5,00; от 0 до 10,00; от 0 до 20,00; от 0 до 40,00; от 0 до 80,00; от 0 до 160,00	от 0 до 0,10; от 0 до 0,30; от 0 до 0,65; от 0 до 1,25; от 0 до 2,50; от 0 до 5,00; от 0 до 10,0 от 0 до 20,00; от 0 до 40,00; от 0 до 80,00; от 0 до 160,00		
Пределы допускаемой абсолютной погрешности измерений ослабления, дБ/дБ		±0,05		
Пределы допускаемой абсолютной погрешности измерений длины, м Примечания: * Здесь и далее (дБм) обо	$DL = \pm (0.75 + 5 \cdot 10^{-5} \cdot L + d),$ где L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м			

Примечания: * Здесь и далее (дБм) обозначает (дБ) относительно 1 мВт.

** Здесь и далее динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к рефлектометру конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

Таблица 3 - Метрологические характеристики рефлектометров оптических КИВИ-7220 и КИВИ-7230

Паолица 3 - Метрологические характ Модификация рефлектометров	КИВИ-7221	КИВИ-7222	КИВИ-7231	КИВИ-7232	КИВИ-7233	КИВИ-7234
оптических КИВИ-7220 и КИВИ-7230	Kribri-7221	KYIDYI-1222	Kribri-7231	Kribri-7232	Kribri-7255	Kribri-7234
Тип волокна	Одномодовое 9/125 мкм					
Рабочие длины волн, нм	1310+20/1550+20: 1310+20/1550+20: 1310+20/1550+20			1310±20/1550±20;		
т доочие длины воли, им	1310±20/1550±20	1625±10	1310±20/1550±20	1625±10	1310±20/1550±20;	1650±5
	1310±20/1330±20	(с фильтром)	1310±20/1330±20	(с фильтром)	1625±10	(с фильтром)
Уровень выходной мощности		(с фильтром)		(с фильтром)		(с фильтром)
оптического излучения в непрерывном						
режиме, дБм, не менее	-6,0 / -6,0	-6,0 / -6,0 / -6,0	-2,5 / -2,5	-2,5 / -2,5 / -2,5	-2,5 / -2,5 / -2,5	-2,5 / -2,5 / -2,5
Нестабильность уровня выходной	0,07 0,0	0,07 0,07 0,0	2,0 / 2,0	2,5 / 2,5 / 2,5	2,5 / 2,5 / 2,5	2,5 / 2,5 / 2,5
мощности оптического излучения в						
непрерывном режиме за 15 мин						
(после 15 минут прогрева), дБ, не более	±0.05					
Динамический диапазон измерений						
ослабления (при усреднении 3 мин,						
по уровню 98 % от максимума шумов,						
при длительности импульса 20 мкс), дБ	34/33	34/33/33	37/36	37/36/37	37/36/37	37/36/37
Мертвая зона при измерении, м						
- ослабления	4,0/4,0	4,0/4,0 /4,0	3,5/3,5	3,5/3,5/3,5	3,5/3,5/3,5	3,5/3,5/3,5
- положения неоднородности	0,7/0,7	0,7/0,7/0,7	0,5/0,5	0,5/0,5/0,5	0,5/0,5/0,5	0,5/0,5/0,5
Длительность зондирующих импульсов,						
нс	3; 5; 10; 30; 50; 100; 275; 1000; 2500; 5000; 10000; 20000					
Диапазоны измеряемых длин, км	от 0 до 0,10; от 0 до 0,30; от 0 до 0,65; от 0					
	до 1,25; от 0 до 2,50; от 0 до 5,00; от 0 до		от 0 до 0,10; от 0 до 0,30; от 0 до 0,65; от 0 до 1,25; от 0 до 2,50; от 0 до 5,00;			
	10,00; от 0 до 20,00; от 0 до 40,00;		от 0 до 10,00; от 0 до 20,00; от 0 до 40,00; от 0 до 80,00; от 0 до 160,00;			
	от 0 до 80,00; от 0 до 160,00; от 0 до от 0 до 260,00; от 0 до 400,00					
	260,00					
Пределы допускаемой абсолютной						
погрешности измерений ослабления,						
дБ/дБ	±0,03					
Пределы допускаемой абсолютной по-	$DL = \pm (0.75 + 2.5 \cdot 10^{-5} \cdot L + d),$					
грешности измерений длины, м	где L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.					

Таблица 4 - Метрологические характеристики встроенных измерителей оптической мощности

	1 1
Наименование характеристики	Значение
Длины волн градуировки, нм	850, 1300, 1310, 1490, 1550, 1625
Диапазон измерений уровня средней	
мощности оптического излучения, дБм	от -50 до +27
Пределы допускаемой относительной	
погрешности измерений уровня средней	$\underset{+ \text{ an } 3+}{\text{ 40 } \circ}$
мощности оптического излучения на длинах	$\pm \overset{\mathbf{æ}}{\mathbf{c}} \overset{\mathbf{o}}{\mathbf{c}} \overset{\mathbf{o}}{\mathbf{c}$
волн градуировки, дБ	

Примечание: * Здесь и далее A обозначает измеренное значение мощности в нВт: $A = 10^{0.1P+6}$, где P - измеренное значение уровня средней мощности в дБм

Таблица 5 - Основные технические характеристики рефлектометров

Наименование характеристики	Значение
Электропитание осуществляется от сети переменного	
тока через блок питания:	
- напряжением, В	220±20
- частотой, Гц	55±5
Габаритные размеры, мм, не более	
- высота	166
- ширина	200
- глубина	68
Масса (включая батарею), кг, не более	1,5
Условия эксплуатации:	
- температура окружающей среды, °С	от -10 до +50
- относительная влажность воздуха (без конденсата),	
%, не более	95

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским способом и на заднюю панель корпуса рефлектометра методом наклеивания этикетки.

Комплектность средства измерений

Таблица 6 - Комплектность средства измерений

Наименование	Количество
Паименование	Количество
Рефлектометр оптический серии КИВИ-7200 ¹	1 шт.
Сетевой адаптер	1 шт.
Руководство по эксплуатации	1 экз.
Примечание: 1 Модель указывается при заказе	

Поверка

осуществляется по документам Р 50.2.071-2009 «Государственная система обеспечения единства измерений. Рефлектометры оптические. Методика поверки» и ГОСТ Р 8.720-2010 «Государственная система обеспечения единства измерений. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Основные средства поверки:

1 Государственный рабочий эталон единицы средней мощности оптического излучения в волоконно-оптических системах передачи в диапазоне от 10^{-11} до 10^{-2} Вт на длинах волн от 500 до 1700 нм по ГОСТ 8.585-2013.

Основные метрологические характеристики:

Диапазон измеряемой средней мощности оптического излучения: от 10^{-11} до 10^{-2} Вт. Длины волн градуировки измерителя мощности (длины волн излучения источников): 632,8; от 840,0 до 860,0; 1064,0; от 1300,0 до 1320,0; от 1540,0 до 1560,0; от 1485,0 до 1495,0; от 1620,0 до 1630,0 нм. Пределы допускаемой относительной погрешности измерений средней мощности оптического излучения на длинах волн градуировки в диапазоне от 10^{-11} до $2 \cdot 10^{-3}$ включительно: $\pm 2,5$ %; в диапазоне от 10^{-3} до 10^{-2} Вт включительно: $\pm 3,5$ %. Пределы допускаемой относительной погрешности измерений средней мощности оптического излучения в рабочем спектральном диапазоне: $\pm 5,0$ %.

2 Государственный рабочий эталон единиц длины и ослабления в световоде в диапазонах воспроизведения от 0,06 до 600,00 км и от 0,5 до 20,0 дБ по ГОСТ 8.585-2013.

Основные метрологические характеристики:

Диапазон воспроизведения длины (расстояния) до мест неоднородностей в оптическом волокне от 0,06 до 600,00 км, пределы допускаемой абсолютной погрешности воспроизведения длины (расстояния) до мест неоднородностей в оптическом волокне $\pm (0,15+5\cdot 10^{-6} L)$ м, где L - воспроизводимая длина, м; диапазон воспроизведения значений ослабления оптического излучения: от 0,5 до 40,0 дБ; пределы допускаемой абсолютной погрешности измерений ослабления оптического излучения: $\pm 0,015\cdot A$, где A - измеряемое ослабление, дБ.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на заднюю панель рефлектометра.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к рефлектометрам оптическим серии КИВИ-7200

ГОСТ 8.585-2013 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации».

 ${
m P}$ 50.2.071-2009 «Государственная система обеспечения единства измерений. Рефлектометры оптические. Методика поверки».

ГОСТ Р 8.720-2010 «Государственная система обеспечения единства измерений. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Изготовитель

Общество с ограниченной ответственностью «КивиТех» (ООО «КивиТех»)

ИНН: 5003090675

Адрес: 108811, г. Москва, п. Московский, Киевское шоссе, 22-й км, домовладение 4, строение 1, блок ${\bf F}$

Телефон (факс): +7(495)775-46-04

Web-сайт: kiwitest.ru E-mail: <u>info@kiwitest.ru</u>

Заявитель

Закрытое акционерное общество «Концепт Технологии» (ЗАО «Концепт Технологии»)

ИНН: 772854540

Юридический адрес: 117574, г. Москва, Одоевского пр., д.3, корп.7, пом.ТАРП

Почтовый адрес: 108811, г. Москва, Киевское ш., 1-й км от МКАД, Бизнес Парк «Румянцево», блок «Б», подъезд 6, этаж 7, офис 701Б

Телефон: +7(495)775-31-75, факс: +7(495)775-31-75*109

E-mail: <u>info@c-tt.ru</u>, <u>www.c-tt.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: +7(495) 437-56-33; факс: +7(495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации Φ ГУП «ВНИИО Φ И» по проведению испытаний средств измерений в целях утверждения типа № 30003-14 от 23.06.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»_____2017 г.