ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ

Первый заместитель директора по научной работе—

06

Заместитель директора по качеству

DI VII «BHIMP»

В.А. Фафурин

2017 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений ПРЕОБРАЗОВАТЕЛИ РАСХОДА ЖИДКОСТИ ТУРБИННЫЕ ВОСТОК-М МОДЕЛЕЙ ВСТК И ВСТК-М

Методика поверки

МП 6586-1-2017

Настоящая инструкция распространяется на преобразователи расхода жидкости турбинные ВОСТОК-М моделей ВСТК и ВСТК-М (далее – преобразователи) предназначенные для измерений объемного расхода и объема жидкостей и преобразования измеренных значений в числоимпульсные сигналы.

Поверку преобразователей наряду с методикой, изложенной в данной инструкции, допускается проводить по МИ 3380-2012 «Государственная система обеспечения единства измерений. Преобразователи объемного расхода. Методика поверки на месте эксплуатации поверочной установкой» (далее – МИ 3380-2012).

Настоящая инструкция устанавливает методику первичной и периодической поверок. Интервал между поверками преобразователей – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют следующие операции:

- внешний осмотр (п. 6.1);
- опробование (п. 6.2);
- определение метрологических характеристик (п. 6.3);
- оформление результатов поверки (п. 7).

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки преобразователей применяют следующие средства поверки:
- рабочий эталон 1-го разряда (далее эталон) по ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости» или ГОСТ 8.142-2013 «ГСИ. Государственная поверочная схема для средств измерений массового и объемного расхода (массы и объема) жидкости» с диапазон воспроизведения объемного расхода соответствующему поверяемому преобразователю.
- 2.2 При проведении поверки по МИ 3380-2012 средства поверки в соответствии с разделом 4 МИ 3380-2012.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При проведении поверки соблюдают требования:
- правил технической эксплуатации электроустановок потребителей;
- правил безопасности при эксплуатации средств поверки, приведенных в их эксплуатационных документах;
 - инструкций по охране труда, действующих на объекте.
- 3.2 К проведению поверки допускаются лица, изучившие настоящую инструкцию, руководство по эксплуатации преобразователей, эксплуатационные документы средств поверки и прошедшие инструктаж по технике безопасности.
- 3.3 К средствам поверки и используемому при поверке оборудованию обеспечивают свободный доступ.
- 3.4 Освещенность должна обеспечивать отчетливую видимость применяемых средств поверки, снятие показаний с приборов.
- 3.5 При проведении поверки по МИ 3380-2012 соблюдают требования безопасности, охраны труда и к квалификации поверителей установленные в разделе 5 МИ 3380-2012.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 Поверку проводят на месте эксплуатации в комплекте с элементами измерительной линии или на стационарных поверочных установках в лабораторных условиях.
 - 4.2 Параметры окружающей среды:

- температура окружающего воздуха

(20±10) °C;

- относительная влажность воздуха

от 30 % до 80 %;

- атмосферное давление

от 84 до 106,7 кПа.

- 4.3 Рабочая жидкость: нефть (в том числе сырая), нефтепродукты, жидкие углеводороды, вода и иные жидкости с различной вязкостью.
- 4.4 Вязкость рабочей жидкости находится в пределах диапазона, указанного в паспорте преобразователя.
 - 4.5 Содержание свободного газа в рабочей жидкости не допускают.
- 4.6 Изменение температуры рабочей жидкости за время одного измерения не более 0,2°C.
- 4.7 Поверка осуществляется в диапазоне измерений, указанном в паспорте завода изготовителя, и он может отличаться от максимального диапазона измерений. Допускается проведение периодической поверки в меньшем диапазоне измерений на основании письменного заявления владельца, оформленного в произвольной форме.
- 4.8 При проведении поверки по МИ 3380-2012 соблюдают условия поверки, установленные в разделе 6 МИ 3380-2012.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Поверяемый преобразователь подключают к эталону и приводят их в рабочее положение в соответствии с требованиями эксплуатационных документов.
- 5.2 Устанавливают любое значение расхода в пределах рабочего диапазона преобразователя, в технологической схеме поверки создают максимальное рабочее давление, которое может быть при поверке. Технологическую схему считают испытанной на герметичность, если в течение 10 минут после создания давления не наблюдается течи рабочей жидкости через фланцевые соединения, через сальниковые уплотнения задвижек, дренажных и воздушных вентилей.
- 5.3 Подготавливают средства поверки к поверочным работам в соответствии с их эксплуатационными документами.
- 5.4 При проведении поверки по МИ 3380-2012 выполняют операции в соответствии с разделом 7 МИ 3380-2012.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1 Поверку проводят в соответствии с разделом 8 МИ 3380-2012 или по пунктам 6.2 6.4 данной методики.
 - 6.2 Внешний осмотр

При внешнем осмотре преобразователя определяют:

- соответствие комплектности перечню, указанному в паспорте;
- соответствие требованиям технической документации в части маркировки, упаковки;
- четкость изображения надписи на маркировке;
- отсутствие вмятин и механических повреждений на корпусе преобразователя, ухудшающих внешний вид и препятствующих проведению поверки.

Результаты проверки внешнего осмотра считают положительными, если на преобразователе отсутствуют механические повреждения и дефекты, препятствующих его применению; его внешний вид и надписи соответствуют требованиям эксплуатационных документов; комплектность соответствует перечню, указанному в паспорте.

6.3 Опробование

- 6.3.1 Устанавливают любое значение расхода в пределах рабочего диапазона преобразователя и проводят пробное измерение.
- 6.3.2 Результаты опробования считают положительными, если на дисплее устройства обработки информации или эталона отображаются текущие значения:
 - количества импульсов, выдаваемых поверяемым преобразователем;
 - температуры и давления рабочей жидкости в преобразователе и эталоне.
 - 6.4 Определение метрологических характеристик
- 6.4.1 Определение метрологических характеристик преобразователя при измерении объемного расхода и объема жидкости при условии, что соблюдается соотношение 1:3 между пределами допускаемой относительной погрешности эталона расхода и пределами допускаемой относительной погрешности преобразователя, проводят по пункту 6.4.2. В случае, когда соотношение между пределами допускаемой относительной погрешности эталона расхода и пределами допускаемой относительной погрешности преобразователя менее 1:3, но более 1:2, поверку проводят в соответствии с пунктом 6.4.3 настоящей методики.
- 6.4.2 Проводят измерения накопленного объема с помощью эталона и преобразователя не менее чем в пяти точках расхода, равномерно распределенных по всему рабочему диапазону измерения объемного расхода преобразователя. Объем, измеренный эталоном и преобразователем, должны быть приведены к одинаковым условиям по давлению и температуре. При каждом значении объемного расхода (показания эталона) проводят не менее трех измерений. Время измерения накопленного объема зависит от конструкции и характеристик применяемого эталона и определяется эксплуатационными документами на эталон.
- 6.4.3 Относительную погрешность преобразователя при измерении объемного расхода и объема жидкости, $\delta_{\nu\mu}$, %, определяют для каждого измерения по формуле:

$$\delta_{Vji} = \left(\frac{V_{ji} - V_{3ji}}{V_{3ji}}\right) \cdot 100. \tag{1}$$

Результаты считают положительными, если относительная погрешность измерения объемного расхода и объема жидкости при каждом измерении не превышает значения, указанного в паспорте.

6.4.4 Проводят измерения накопленного объема с помощью эталона и преобразователя не менее чем в пяти точках расхода, равномерно распределенных по всему рабочему диапазону измерения объемного расхода преобразователя. Объем, измеренный эталоном и преобразователем, приводят к одинаковым условиям по давлению и температуре в соответствии с правилами содержания и применения эталона. При каждом значении объемного расхода (показания эталона) проводят не менее пяти измерений. Время измерения накопленного объема зависит от конструкции и характеристик применяемого эталона и определяется эксплуатационными документами на эталон.

Для каждого i-го измерения в j-й точке рабочего диапазона определяют (вычисляют) коэффициент коррекции для диапазона расхода, MF_{ii} , (meter-factor), по формуле:

$$MF_{ji} = \frac{V_{\ni ji}}{V_{ii}},\tag{2}$$

где

- накопленный объем, измеренный эталоном при i-ом измерении, π ;

- накопленный объем, измеренный преобразователем при i-ом измерении, л.

Определяют среднее значение коэффициента коррекции в точках диапазона по формуле:

$$MF_{j} = \frac{1}{n} \sum_{i=1}^{n} MF_{ji},$$
 (3)

где количество измерений в каждой точке расхода.

Исключают грубые погрешности, используя критерий Граббса, предполагая, что наибольшее значение коэффициента коррекции, $MF_{\max ii}$, и наименьшее значение коэффициента коррекции, $MF_{\min ii}$, в j-той точке объемного расхода вызваны грубыми погрешностями. Для этого вычисляют критерий Граббса, G_{1ji} и G_{2ji} , по формулам:

$$G_{1ji} = \frac{\left| MF_{\max ji} - MF_{j} \right|}{\sqrt{\frac{\sum_{i=1}^{n} \left(MF_{ji} - MF_{j} \right)^{2}}{n-1}}},$$
(4)

$$G_{2ji} = \frac{\left| MF_{j} - MF_{\min ji} \right|}{\sqrt{\sum_{i=1}^{n} \left(MF_{ji} - MF_{j} \right)^{2}}},$$
(5)

где

 $MF_{\max ji}$ — наибольшее значение коэффициента коррекции в j-той точке объемного расхода, имп/м 3 ; $MF_{\min ji}$ — наименьшее значение калибровочного коэффициента в j-той точке

объемного расхода, имп/м³.

Сравнивают критерии Граббса, рассчитанные по формулам (4) и (5), с теоретическими значениями критерия Граббса, G_{T} , (таблица критических значений критерия Граббса приведена в Приложении А):

- если $G_{1ji} > G_T$ то $MF_{\max ji}$ исключают как маловероятное значение, если $G_{2ji} > G_T$ то $MF_{\min ii}$ исключают как маловероятное значение;
- если $G_{1ji} \leq G_T$ то $MF_{\max ji}$ не считают промахом и оставляют, если $G_{2ji} \leq G_T$ то $MF_{\min ii}$ не считают промахом и оставляют.

Допускают не более одного промаха для каждой точки расхода. После исключения промаха (в точке расхода) выполняют одно дополнительное измерение.

В случае использования одного коэффициента преобразования преобразователя для всего диапазона измерения, определяют среднее значение коэффициент коррекции для диапазона расхода, MF, (meter-factor) по формуле:

$$MF = \frac{1}{m \cdot n} \sum_{j=1}^{m} \sum_{i=1}^{n} \frac{V_{\Im ji}}{V_{ji}},\tag{6}$$

количество точек измерений расхода; где m

количество измерений в каждой точке расхода;

 V_{3ji} — накопленный объем, измеренный эталоном при i-ом измерении в j-ой точке расхода, π ;

 V_{ji} — накопленный объем, измеренный преобразователем при i-ом измерении в j-ой точке расхода, л.

В случае использования нескольких постоянных коэффициентов преобразования преобразователя для каждого k-го поддиапазона измерения вычисляют коэффициент коррекции в поддиапазоне расхода, MF_{ndx} , по формуле:

$$MF_{n\partial\kappa} = \frac{\left(MF_j - MF_{j+1}\right)_k}{2},\tag{7}$$

где MF_{j+1} — коэффициент коррекции в (j+1) точке расхода.

Определяют для каждой точки расхода в рабочем диапазоне среднеквадратическое отклонение (СКО), S_i , %, по формуле:

$$S_{j} = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{MF_{ji} - MF_{j}}{MF_{j}}\right)^{2}}{n-1}} \cdot 100,$$
(8)

где $\sum n_i$ – суммарное количество измерений в каждой точке расхода.

Рассчитывают среднее квадратическое отклонение среднего арифметического в j-ой точке объемного расхода, $S_{\overline{j}}$, %, по формуле

$$S_{\bar{j}} = \frac{S_j}{\sqrt{n_j}} \,. \tag{9}$$

Рассчитывают доверительные границы (без учета знака) случайной составляющей погрешности в j-той точке объемного расхода, $\varepsilon_{_{j_{\max}}}$, %, по формуле

$$\varepsilon_{i,\max} = t \cdot S_{i,\max},\tag{10}$$

где

- коэффициент Стьюдента при доверительной вероятности 0,95 и количеству измерений в j-ой точке объемного расхода, находят по Приложению Б.

 $S_{\overline{j}_{\max}}$ — максимальное значение среднего квадратического отклонения среднего арифметического в j-ой точке объемного расхода, %.

Рассчитывают неисключенную систематическую составляющую погрешности, вызванную аппроксимацией коэффициента преобразования преобразователя в рабочем диапазоне, Θ_i , %:

а) в случае использования одного коэффициента преобразования преобразователя для всего диапазона измерения по формуле:

$$\Theta_j = \left| \frac{MF_j - MF}{MF} \right| \cdot 100 \,, \tag{11}$$

б) в случае использования нескольких постоянных коэффициентов преобразования преобразователя для каждого k-го поддиапазона измерения по формуле:

$$\Theta_{j} = \left| \frac{MF_{j} - MF_{n\partial\kappa}}{MF_{n\partial\kappa}} \right| \cdot 100 , \qquad (12)$$

в) в случае использования кусочно-линейной аппроксимации для каждого для каждого k-го поддиапазона измерения по формуле:

$$\Theta_{j} = 0.5 \cdot \left| \frac{\left(MF_{j} - MF_{j+1} \right)_{k}}{\left(MF_{j} + MF_{j+1} \right)_{k}} \right| \cdot 100.$$
(13)

Рассчитывают суммарную неисключенную систематическую погрешность, Θ_{Σ} , %, по формуле:

$$\Theta_{\Sigma} = \Theta_{\mathcal{F}} + \Theta_{imax},\tag{14}$$

где

 $\Theta_{\mathfrak{I}}$ — неисключенная систематическая составляющая погрешности эталона расхода при воспроизведении объемного расхода (объема) измеряемой среды;

 Θ_{jmax} — максимальное значение неисключенной систематической составляющей погрешности для j-ой точке объемного расхода, %.

Рассчитывают максимальную относительную погрешность при измерении объемного расхода и объема жидкости в рабочем диапазоне расхода, δ_{λ} , %, по формуле:

$$\delta_{\partial} = K \cdot S_{\Sigma},$$

$$K = \frac{\varepsilon_{j_{\text{max}}} + \Theta_{\Sigma}}{S_{\bar{j}} + \frac{\Theta_{\Sigma}}{\sqrt{3}}},$$

$$S_{\Sigma} = \sqrt{\frac{\Theta_{\Sigma}^{2}}{3} + S_{\bar{j}}^{2}}.$$
(15)

Результаты считают положительными, если относительная погрешность измерения объемного расхода и объема жидкости не превышает значения, указанного в паспорте.

При положительном результате поверки рассчитывают новое значение коэффициента преобразования преобразователя при использовании одного коэффициента преобразования для всего диапазона измерения по формуле:

$$KF = \frac{KF_{3aa}}{MF},\tag{16}$$

где

 значение коэффициента преобразования преобразователя, полученное при калибровке преобразователя фирмой-изготовителем при выпуске из производства или при предыдущей поверке, имп/л.

В случае использования в диапазоне измерения нескольких коэффициентов преобразования рассчитывают новое значение коэффициента преобразования преобразователя для каждой точки диапазона расхода по формуле:

$$KF_{j} = \frac{KF_{3ag}}{MF_{j}}. (17)$$

В случае использования нескольких постоянных коэффициентов преобразования преобразователя для каждого *k*-го поддиапазона измерения рассчитывают новое значение

коэффициента преобразования преобразователя для каждого k-го поддиапазона расхода по формуле:

$$KF_{\kappa} = \frac{KF_{_{3a8}}}{MF_{_{nok}}}. (18)$$

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки оформляют в виде протокола произвольной формы. При проведении поверки по МИ 3380-2012 результаты поверки оформляют в соответствии с разделом 10 МИ 3380-2012.
- 7.2 При положительных результатах поверки на преобразователь выписывают свидетельство о поверке в соответствии с приказом Минпромторга России №1815 от 2 июля 2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

На оборотной стороне свидетельства о поверке указывается:

- диапазон измерений объемного расхода;
- вид реализуемой градуировочной характеристики: один коэффициент преобразования для всего диапазона измерений, несколько коэффициентов преобразования для каждого поддиапазона измерений, кусочно-линейной аппроксимации;
- коэффициент преобразования KF, имп/м³, при использовании одного коэффициента преобразования для всего диапазона измерений;
- коэффициенты преобразования KF_{κ} , имп/м³, при использовании нескольких коэффициентов преобразования для каждого поддиапазона измерений с указанием границы k-го поддиапазона измерения расхода;
- коэффициенты преобразования KF_j , имп/м³, при кусочно-линейной аппроксимации с указанием точек объемного расхода;
 - пределы допускаемой относительной погрешности.
 - 7.3 Знак поверки наносится на свидетельство о поверке.
- 7.4 При отрицательных результатах поверки преобразователь к эксплуатации не допускают и выдают извещение о непригодности к применению с указанием причин в соответствии с приказом Минпромторга России №1815 от 2 июля 2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

приложение а

(Обязательное)

КРИТИЧЕСКИЕ ЗНАЧЕНИЯ ДЛЯ КРИТЕРИЯ ГРАББСА

Критические значения для критерия Граббса при количестве измерений n согласно ГОСТ Р 8.736-2011.

n	$G_{\!T}$		
3	1,155		
4	1,481		
5	1,715		
6	1,887		
7	2,020		
8	2,126		
9	2,215		
10	2,290		
11	2,355		
12	2,412		
13	2,462		
14	2,507		
15	2,549		
16	2,585		
17	2,620		
18	2,651		
19	2,681		
20	2,709		
21	2,733		
22	2,758		
23	2,781		
24	2,802		
25	2,822		
26	2,841		
27	2,859		
28	2,876		
29	2,893		
30	2,908		
31 2,924			
32	2,938		
33	2,952		
34	2,965		
36	2,991		
38	3,014		
40	3,036		

приложение Б

(Обязательное)

ЗНАЧЕНИЯ КОЭФФИЦИЕНТА СТЬЮДЕНТА

Коэффициент Стьюдента при доверительной вероятности P=0,95 и количестве измерений n-1

			A C TO LOCAL CONTRACT
n-1	P = 0.95	n-1	P = 0.95
3	3,182	16	2,120
4	2,776	18	2,101
5	2,571	20	2,086
6	2,447	22	2,074
7	2,365	24	2,064
8	2,306	26	2,056
9	2,262	28	2,048
10	2,228	30	2,043
12	2,179	∞	1,96
14	2,145		