Государственная система обеспечения единства измерений

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Московской области» (ФБУ «ЦСМ Московской области»)

УТВЕРЖДАЮ

Директор Центрального отделения
ФБУ «ЦСМ Московской области»

С.Г. Рубайлов

2018 г.

АЛЬФА-БЕТА РАДИОМЕТРЫ ДЛЯ ИЗМЕРЕНИЙ МАЛЫХ АКТИВНОСТЕЙ УМФ-2000

Методика поверки ФВКМ.412121.001МП

Содержание

1	Методика первичной поверки	3
	1.1 Операции поверки	3
	1.2 Средства поверки	3
	1.3 Требования к квалификации поверителей	4
	1.4 Требования безопасности	4
	1.5 Условия поверки	4
	1.6 Подготовка к поверке	4
	1.7 Проведение поверки	4
	1.7.1 Внешний осмотр	4
	1.7.2 Опробование	5
	1.7.3 Определение чувствительности радиометра к излучению	
	поверхностных источников	5
	1.7.4 Определение допускаемой основной относительной погрешности	
	измерений активности	6
	1.7.5 Оформление результатов первичной поверки	7
2	Методика периодической поверки	8
	2.1 Операции поверки	8
	2.2 Средства поверки	8
	2.3 Требования к квалификации поверителей	8
	2.4 Требования безопасности	9
	2.5 Условия поверки	9
	2.6 Подготовка к поверке	9
	2.7 Проведение поверки	9
	2.7.1 Внешний осмотр	9
	2.7.2 Опробование	9
	2.7.3 Определение допускаемой основной относительной погрешности	
	измерений активности	10
	2.7.4 Обработка результатов измерений	11
	2.7.5 Оформление результатов периодической поверки	11

Настоящая методика поверки предназначена для проведения первичной и периодической поверки альфа- бета радиометров для измерений малых активностей УМФ-2000 (далее – радиометров) и устанавливает методы и средства поверки.

Требования к организации, порядку проведения поверки и форме представления результатов поверки определяются действующей нормативно-технической документацией по обеспечению единства измерений.

Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации радиометры.

Первичная поверка осуществляется при выпуске вновь произведенных радиометров и после их ремонта. Периодическая поверка производится при эксплуатации радиометров.

Интервал между поверками составляет два года.

1 МЕТОДИКА ПЕРВИЧНОЙ ПОВЕРКИ

1.1 Операции поверки

1.1.1 При проведении первичной поверки должны выполняться операции, указанные в таблице 1.1.

Таблица 1.1 Перечень операций при проведении первичной поверки

Наименование операции	Номер пункта документа по поверке
Внешний осмотр	1.7.1
Опробование	1.7.2
Определение чувствительности радиометра к излучению поверхностных источников	1.7.3
Определение допускаемой основной относительной погрешности измерений активности	1.7.4
Оформление результатов поверки	1.7.5

1.2 Средства поверки

1.2.1 При проведении поверки должны применяться основные и вспомогательные средства поверки, приведённые в таблице 1.2.

Таблица 1.2 - Перечень основных и вспомогательных средств поверки

Номер пункта документа по поверке	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
1.7.3, 1.7.4	Рабочий эталон 2 разряда по ГОСТ 8.033-96 на основе источников альфаизлучения закрытых с радионуклидом плутоний-239 типа $1\Pi9$ (регистрационный номер $61304-15$) активностью от $2\cdot10^2$ до $4\cdot10^2$ Бк
1.7.3, 1.7.4	Рабочий эталон 2 разряда по ГОСТ 8.033-96 на основе источников бета- излучения закрытых по ГОСТ 8.033-96 с радионуклидами стронций-90+иттрий 90 типа 1С0 (регистрационный номер 61305-15) активностью от 2·10 ² до 8·10 ² Бк
1.7.3, 1.7.4	Комбинированный контрольный источник 238 U + 234 Th + 234 Pa + 234 U с активностью (238 U + 234 U) от 20 до 200 Бк, входящий в комплект поставки радиометра
1.7.2	Секундомер
1.7.3, 1.7.4	Пинцет

Примечание — Возможно применение других средств поверки с аналогичными характеристиками, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

1.3 Требования к квалификации поверителей

1.3.1 К поверке радиометров допускаются поверители, имеющие допуск к работам с источниками ионизирующих излучений и изучившие руководство по эксплуатации поверяемых радиометров.

1.4 Требования безопасиости

- 1.4.1 При проведении поверки следует руководствоваться требованиями по технике безопасности, изложенными в:
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
- СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
- Правилах по охране труда при эксплуатации электроустановок, а также приведенными в документации на средства поверки и поверяемые средства измерений.

1.5 Условия поверки

- 1.5.1 Поверка должна быть проведена при соблюдении следующих условий:
- температура окружающего воздуха+(20 ±5) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от **84**,0 до **106**,7 кПа;
- естественный фон ионизирующего излучения не более 0,2 мк3в·ч $^{-1}$.
- 1.5.2 В процессе проведения поверки должна быть исключена возможность увеличения фона внешнего излучения от посторонних радионуклидных источников.

1.6 Подготовка к поверке

- 1.6.1 Подготовить поверяемый радиометр к работе в соответствии с руководством по эксплуатации ФВКМ.412121.001РЭ.
- 1.6.2 Подготовить к работе основное и вспомогательное оборудование, приведенное в таблице 1.2.

1.7 Проведение поверки

1.7.1 Виешний осмотр

При внешнем осмотре должно быть установлено:

- соответствие комплектности радиометра;
- отсутствие дефектов, влияющих на работу радиометра;
- наличие эксплуатационной документации.

Результаты внешнего осмотра считать положительными, если комплектность радиометра достаточна для проведения поверки в соответствии с данной методикой, отсутствуют внешние дефекты, влияющие на работу радиометра, имеется руководство по эксплуатации и методика поверки. В противном случае дальнейшая поверка радиометра не проводится до устранения обнаруженных несоответствий.

1.7.2 Опробование

При опробовании необходимо:

- 1) включить радиометр;
- 2) установить факт работы сигнальных светодиодов и цифровых индикаторов, кнопок «ПУСК» и «СТОП»;
- 3) установить факт работы таймера, для этого перевести радиометр в режим «β, ВРЕМЯ», установить экспозицию 10 с, нажать кнопку «ПУСК», одновременно включить секундомер, наблюдать на нижнем цифровом индикаторе счет секунд, зафиксировать факт остановки счета через 10 с (по показаниям секундомера);
 - 4) повторить пункт 3) с установленными экспозициями 100 и 1000 с.

Результаты опробования являются положительными, если радиометр включается, работают светодиоды, индикаторы и кнопки, а таймер обеспечивает экспозицию в 10, 100, 1000 с, при этом разница между установленной на радиометре экспозицией и показаниями секундомера не превышает ± 2 с. В противном случае радиометр подлежит ремонту.

1.7.3 Определение чувствительности радиометра к излучению поверхностных нсточников

1.7.3.1 После прогрева и установления рабочего режима радиометра, провести измерение фона одновременно по альфа- и бета- каналу при экспозиции 3000 с не менее пяти раз. Измерение провести с пустой подложкой, установленной в устройство подачи счетных образцов. Рассчитать среднюю скорость счета фона по каждому каналу n_{ϕ} , по формулам

$$n_{i\phi} = \frac{N_{i\phi}}{t_{i\phi}}; \qquad \qquad \frac{-}{n_{\phi}} = \frac{\sum_{i=1}^{k} n_{i\phi}}{k}, \qquad (1.1)$$

где $N_{i\phi}$ – число отсчетов, полученных в i-ом измерении фона;

 $t_{i\phi}$ – время і-го измерения фона;

k – число измерений фона.

1.7.3.2 Провести измерения скорости счета для рабочих эталонов 1С0 и 1П9 не менее пяти раз с экспозицией, обеспечивающей накопление не менее 1000 импульсов.

Определить среднюю скорость счета для каждого рабочего эталона п, по формуле

$$n_i = \frac{N_i}{t_i};$$
 $\bar{n} = \frac{\sum_{i=1}^k n_i}{k},$ (1.2)

где N_i – число импульсов, полученных в i-ом измерении;

t. - время i-го измерения;

k – число измерений данного рабочего эталона.

Полученные результаты зафиксировать в протоколе измерений произвольной формы.

1.7.3.3 Рассчитать среднюю скорость счета без фона \overline{n}_{cq} и её среднеквадратическое отклонение $S\left(\overline{n}_{cq}\right)$ в абсолютных единицах для каждого рабочего эталона, по формулам

$$\overline{\mathbf{n}}_{cs} = \overline{\mathbf{n}} - \overline{\mathbf{n}}_{\phi} \tag{1.3}$$

$$S\left(\overline{n}_{cq}\right) = \sqrt{\frac{\overline{n}}{t_{_{\text{MSM}}}} + \frac{\overline{n}_{\phi}}{t_{\phi}}}, \qquad (1.4)$$

где $t_{_{\mathrm{изм}}}$ – суммарное время измерения данного рабочего эталона, с;

 t_{ϕ} – суммарное время измерений фона, с.

1.7.3.4 Рассчитать чувствительность радиометра ϵ для рабочих эталонов 1C0 и 1П9, по формулам

$$\varepsilon_{\rm C0} = \frac{-n_{\rm cu}}{A_{\rm M}^{\rm C0}} \tag{1.5}$$

$$\varepsilon_{\Pi 9} = \frac{-\frac{1}{n_{\text{cq}}}}{A_{\text{M}}^{\Pi 9}},\tag{1.6}$$

где А_и – активность соответствующего рабочего эталона, рассчитанная по формуле

$$A_{H} = A_{\text{nacn}} \cdot e^{-0.693 \cdot t/T_{1/2}}, \qquad (1.7)$$

где А паст – значение активности рабочего эталона из свидетельства о поверке,

t - время, прошедшее со времени поверки источника, лет,

Т_{1/2} – период полураспада данного радионуклида, лет.

1.7.3.5 Рассчитать пределы допускаемой основной относительной погрешности определения чувствительности радиометра по рабочим эталонам $\Delta \epsilon_{C0,\Pi9}$, в процентах, по формуле

$$\Delta \varepsilon_{\text{CO},\Pi 9} = \sqrt{\left(\frac{1.96 \cdot \text{S}\left(\overline{\text{n}}_{\text{cq}}\right)}{\overline{\text{n}}_{\text{cq}}} \cdot 100\right)^{2} + \left(\delta A_{\text{H}}\right)^{2}},$$
 (1.8)

где 1,96 - нормированная квантиль нормального распределения

для доверительной вероятности 95 %;

 δA_{μ} – погрешность рабочего эталона, %.

Значения ϵ для бета- канала должно быть не менее 0,1 имп·с⁻¹·Бк⁻¹, для альфа- канала не менее 0,3 имп·с⁻¹·Бк⁻¹.

Значения є и Дє заносятся в свидетельство о поверке.

1.7.4 Определение допускаемой основной относительной погрешности измерений активности

1.7.4.1 Провести измерения активности любых эталонных источников типа 1С0 и 1П9, отвечающих требованиям, указанным в таблице 1.2 и не использовавшихся при определении чувствительности радиометра.

1.7.4.2 Значения активности А рабочих эталонов 1СО и 1П9, определить по формуле

$$A = \frac{\overline{n}_{cq}}{\varepsilon_{C0.\Pi 9}}, \tag{1.9}$$

где n_{cq} – значение, рассчитанное в соответствии с 1.7.3.3 (формула 1.3);

 $\varepsilon_{\text{C0,П9}}$ — чувствительность радиометра, определённая по рабочим эталонам 1C0 или 1П9 в соответствии с 1.7.3.4 (формулы 1.5 и 1.6).

1.7.4.3 Рассчитать пределы допускаемой основной относительной погрешности измерения активности δA , для P=0.95, в процентах, по формуле

$$\delta A = 1,1 \cdot \sqrt{\frac{A - A_{\mu}}{A_{\mu}} \cdot 100^{2} + (\Delta \varepsilon)^{2}}, \qquad (1.10)$$

где А – значение активности, рассчитанное по формуле (1.9), Бк;

 $\Delta \epsilon_{{\rm C}_{0.\Pi}9}$ – погрешность определения чувствительности по рабочим эталонам, %;

А_и – активность рабочего эталона, рассчитанная по формуле

$$A_{H} = A_{\text{nacn}} \cdot e^{-0.693 \cdot t/T_{1/2}}, \qquad (1.11)$$

где Апасп – значение активности рабочего эталона из его паспорта

(свидетельства о поверке эталона);

t – время, прошедшее со времени поверки эталона (источников 1CO и 1П9), лет,

 $T_{1/2}$ – период полураспада данного радионуклида, лет.

Результаты поверки считать положительными, если пределы допускаемой основной относительной погрешности измерения активности не превышают ± 15 %.

1.7.4.4 Провести измерения скорости счета от контрольного источника и занести её значения в свидетельство о поверке.

1.7.5 Оформление результатов первичной поверки

1.7.5.1 При положительных результатах поверки оформляется свидетельство установленного образца.

В свидетельство о поверке заносятся значения:

- чувствительности радиометра к излучению поверхностных источников;
- скорости счета от контрольного источника.
- 1.7.5.2 При отрицательных результатах поверки радиометр должен быть направлен в ремонт.

2 МЕТОДИКА ПЕРИОДИЧЕСКОЙ ПОВЕРКИ

Настоящая методика распространяется на радиометры и устанавливает методы и средства их периодической поверки в процессе эксплуатации.

2.1 Операции поверки

2.1.1 При проведении периодической поверки должны выполняться операции, указанные в таблице 2.1.

Таблица 2.1 – Перечень операций при проведении поверки

Наименование операции	Номер пункта документа по поверке
Внешний осмотр	2.7.1
Опробование	2.7.2
Определение допускаемой основной относительной погрешности измерений активности	2.7.3
Обработка результатов измерений	2.7.4
Оформление результатов поверки	2.7.5

2.2 Средства поверки

2.2.1 При проведении периодической поверки должны применяться основные и вспомогательные средства поверки, приведённые в таблице 2.2.

Таблица 2.2 – Перечень основных и вспомогательных средств поверки

Номер пункта методики поверки	Наименование эталонных средств измерений, испытательного оборудования и вспомогательной аппаратуры	Технические характеристики
2.7.3	Рабочий эталон 2 разряда по ГОСТ 8.033-96 на основе источников альфа- излучения закрытых с радионуклидом плутоний-239 типа 1П9 (регистрационный номер 61304-15)	Активность от 2·10 ² до 4·10 ² Бк
2.7.3	Рабочий эталон 2 разряда по ГОСТ 8.033-96 на основе источников бета- излучения закрытых с радионуклидами стронций-90 + иттрий-90 типа 1С0 (регистрационный номер 61305-15)	Активность от 2·10 ² до 8·10 ² Бк
2.7.3	Комбинированный контрольный источник 238 U $+^{234}$ Th $+^{234}$ Pa $+^{234}$ U (из комплекта поставки)	Активность (²³⁸ U + ²³⁴ U) от 20 до 200Бк
2.7.3	Секундомер	Класс точности 2
2.7.3	Пинцет	

Примечание — Возможно применение других средств поверки с аналогичными характеристиками, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

2.3 Требования к квалификации поверителей

2.3.1 К поверке радиометров допускаются поверители, имеющие допуск к работам с источниками ионизирующих излучений и изучившие руководство по эксплуатации поверяемых радиометров.

2.4 Требования безопасности

- 2.4.1 При проведении поверки следует руководствоваться требованиями по технике безопасности, изложенными в:
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
- СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
- Правилах по охране труда при эксплуатации электроустановок, а также приведенными в документации на средства поверки и поверяемые средства измерений.

2.5 Условия поверкн

- 2.5.1 Поверка должна быть проведена при соблюдении следующих условий:
- температура окружающего воздуха +(20 ±5) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84,0 до 106,7 кПа;
- естественный фон ионизирующего излучения не более 0,2 мкЗв·ч⁻¹.
- 2.5.2 В процессе проведения поверки должна быть исключена возможность увеличения фона внешнего излучения от посторонних радионуклидных источников.

2.6 Подготовка к поверке

- 2.6.1 Подготовить поверяемый радиометр к работе в соответствии с руководством по эксплуатации ФВКМ.412121.001РЭ.
- 2.6.2 Подготовить к работе основное и вспомогательное оборудование, приведенное в таблице 2.2.

2.7 Проведение поверки

2.7.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- соответствие комплектности радиометра;
- отсутствие дефектов, влияющих на работу радиометра;
- наличие эксплуатационной документации;
- наличие свидетельства предыдущей поверки.

Результаты внешнего осмотра считать положительными, если комплектность радиометра достаточна для проведения поверки в соответствии с данной методикой, отсутствуют внешние дефекты, влияющие на работу радиометра, имеется руководство по эксплуатации, методика поверки и свидетельство о предыдущей поверке. При наличии у поверителя эксплуатационной документации на радиометр, а также методики поверки, представление данных документов является необязательным и указывается при заключении договора. В противном случае дальнейшая поверка радиометра не проводится.

2.7.2 Опробование

При опробовании необходимо:

- 1) включить радиометр;
- 2) установить факт работы сигнальных светодиодов и цифровых индикаторов, кнопок «ПУСК» и «СТОП»;

- 3) установить факт работы таймера, для этого перевести радиометр в режим «β, ВРЕМЯ», установить экспозицию 10 с, нажать кнопку «ПУСК», одновременно включить секундомер, наблюдать на нижнем цифровом индикаторе счет секунд, зафиксировать факт остановки счета через 10 с (по показаниям секундомера);
 - 4) повторить пункт 3) с установленными экспозициями 100 и 1000 с.

Результаты опробования являются положительными, если радиометр включается, работают светодиоды, индикаторы и кнопки, а таймер обеспечивает экспозицию в 10, 100, 1000 с, при этом разница между установленной на радиометре экспозицией и показаниями секундомера не превышает ±2 с. В противном случае радиометр признается непригодным к эксплуатации, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению.

2.7.3 Определение допускаемой основной относительной погрешности измерений активности

2.7.3.1 После прогрева и установления рабочего режима радиометра, провести измерение фона одновременно по альфа- и бета- каналу при экспозиции 3000 с не менее пяти раз. Измерение провести с пустой подложкой, установленной в устройство подачи счетных образцов. Рассчитать среднюю скорость счета фона по каждому каналу n_{ϕ} , по формулам

$$n_{i\phi} = \frac{N_{i\phi}}{t_{i\phi}}; \qquad \overline{n}_{\phi} = \frac{n_{i\phi}}{k}, \qquad (2.1)$$

где $N_{i\phi}$ – число импульсов, полученных в і-ом измерении фона;

 $t_{i\phi}$ – время і-го измерения фона;

k – число измерений фона.

2.7.3.2 Провести измерения скорости счета для рабочих эталонов 1C0 и 1П9 не менее пяти раз с экспозицией, обеспечивающей накопление не менее 1000 импульсов.

Определить среднюю скорость счета для каждого рабочего эталона п, по формуле

$$n_i = \frac{N_i}{t_i};$$
 $\bar{n} = \frac{n_i}{k},$ (2.2)

где N_i – число отсчетов, полученных в і-ом измерении;

 t_{i} – время і-го измерения;

k – число измерений данного рабочего эталона.

Полученные результаты зафиксировать в протоколе измерений произвольной формы.

2.7.3.3 Определить среднюю скорость счета от рабочего эталона без фона $n_{\text{сч}}$, по формуле

$$\overline{n}_{cq} = \overline{n} - \overline{n}_{\phi} \tag{2.3}$$

2.7.3.4 Провести измерения скорости счета от контрольного источника из комплекта поставки радиометра.

2.7.4 Обработка результатов измерений

2.7.4.1 Значения активности А рабочих эталонов 1С0 и 1П9 рассчитать по формуле

$$A = \frac{\overline{n}_{cq}}{\varepsilon_{C0, \Pi9}} \tag{2.4}$$

где \bar{n}_{cq} — средняя скорость счета, рассчитанная по формуле (2.3);

 $\varepsilon_{\text{CO}, \Pi 9}$ — чувствительность радиометра для рабочего эталона 1C0 или 1П9, определенная при первичной поверке и приведенная в свидетельстве о поверке.

2.7.4.2 Определить пределы допускаемой основной относительной погрешности измерения активности δA для P=0.95, в процентах, по формуле

$$\delta A = 1,1 \cdot \sqrt{\frac{A - A_{\text{H}}}{A_{\text{H}}} \cdot 100}^2 + \left(\Delta \varepsilon_{\text{CO}, \Pi_9}\right)^2}$$
 (2.5)

где A_{μ} – активность рабочего эталона, рассчитанная по формуле

$$A_{\mu} = A_{\text{nacn}} \cdot e^{-0.693 \cdot t/T_{1/2}}$$
 (2.6)

А пасп – значение активности рабочего эталона из свидетельства о поверке;

t - время, прошедшее со времени поверки источника, лет;

 $T_{1/2}$ — период полураспада данного радионуклида, лет;

 $\Delta \varepsilon_{{\rm C0},{\rm \Pi}9}$ – погрешность определения чувствительности рабочего эталона из свидетельства о первичной поверке, %.

Результаты поверки считать положительными, если пределы допускаемой основной относительной погрешности измерения активности не превышают ± 15 %.

2.7.5 Оформление результатов периодической поверки

2.7.5.1 При положительных результатах поверки оформляется свидетельство о периодической поверке установленного образца.

В свидетельство о периодической поверке заносятся значения:

- чувствительности радиометра к излучению поверхностных источников из свидетельства о первичной поверке (или из свидетельства о предыдущей поверке);
 - скорости счета от контрольного источника.
- 2.7.5.2 При отрицательных результатах поверки выдается извещение о непригодности радиометра установленного образца (приказ Минпромторга России № 1815 от 02.07.2015 г.) или делается соответствующая запись в технической документации и применение его не допускается.