ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Модули универсальные C-FM-UNI 1 SM

Назначение средства измерений

Модули универсальные C-FM-UNI 1 SM (далее – модули) предназначены для измерительных преобразований аналоговых сигналов напряжения постоянного тока и сигналов от термопреобразователей сопротивления в цифровые сигналы, а также для выдачи аналоговых сигналов силы постоянного тока.

Описание средства измерений

Принцип действия модулей заключается в приеме аналоговых и цифровых входных сигналов их обработке и выдаче аналоговых и цифровых выходных сигналов.

Конструктивно модули состоят из печатной платы, закрытой пластиковым корпусом, имеющей на одной боковой стороне входные контакты, а на противоположной – выходные. Модули имеют следующие входы:

- 2 аналоговых входа напряжения постоянного тока или 2 цифровых входа сигнала калибровки сопротивления постоянному току датчика Pt 1000;
 - аналоговый вход сопротивления постоянному току от датчика температуры Pt 1000. Модули имеют следующие выходы:
 - цифровой выход для управления, программирования, измерений;
 - аналоговый выход напряжения постоянного тока;
 - аналоговый и цифровой выход для создания ШИМ-сигналов;
 - аналоговый и цифровой выход для управления клапанами Emerson типов EX4– EX8.

C помощью внешнего программного обеспечения (далее – ΠO) модули сохраняют все данные, необходимые для эксплуатации, на встроенной микросхеме памяти для настройки конфигураций (F-RAM), при помощи которой можно переносить данные с одних модулей на другие.

Корпус модулей изготовлен из светло-серого пластика RAL 7035.

Общий вид модулей с местами пломбировки от несанкционированного доступа и нанесения знака поверки представлен на рисунке 1.

Рисунок 1 – Общий вид модулей с местами пломбировки от несанкционированного доступа и нанесения знака поверки

Программное обеспечение

В модулях установлено встроенное ПО, которое выполняет функции сбора, обработки и хранения данных. Встроенное ПО (микропрограмма) реализовано аппаратно и является метрологически значимым. Метрологические характеристики модулей нормированы с учетом влияния встроенного ПО. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) модулей предприятием-изготовителем и недоступна для потребителя.

Управление и визуализация результатов измерений реализуется при помощи внешнего ПО. Также внешнее ПО позволяет создавать ШИМ-сигналы при помощи управляющего сигнала TRIAC. С помощью внешнего ПО происходит настройка клапанов Emerson типов EX4–EX8. Внешнее ПО не является метрологически значимым.

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений – «средний» в соответствии с рекомендациями Р 50.2.077-2014.

Идентификационные данные ПО представлены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Итомический на томиче (призмен)	Значение		
Идентификационные данные (признаки)	встроенное ПО	внешнее ПО	
Идентификационное наименование ПО	FW C-FM UNI 1 SM	Work	
Номер версии (идентификационный номер ПО), не ниже	0109	07.05.04	
Цифровой идентификатор ПО	_	_	

Метрологические и технические характеристики

Основные метрологические и технические характеристики модулей приведены в таблицах 2, 3.

Таблица 2 – Основные метрологические характеристики модулей

	тиолици 2 основные метрологи неские характеристики модулен				
Преобразуемая физическая величина	Диапазон входных значений	Разрешение	Диапазон выходных значений	Пределы допускаемой погрешности преобразований: абсолютной (Δ), относительной (δ)	
Напряжение постоянного тока	от 0 до 10 В	0,1 B	10 бит	±0,5 % (δ)	
Сигналы от термопреобразователей сопротивления Pt 1000 (от 862 до 1385 Ом)	от -35 до +100 °C	0,1 °C	10 бит	±0,5 °C (Δ)	

Таблица 3 – Основные технические характеристики модулей

Характеристика	Значение
Параметры питания:	
- напряжение питания переменного тока, В	от 21,6 до 26,4
- частота переменного тока, Гц	от 50 до 60
- напряжение питания постоянного тока, В	от 19,2 до 28,8
Потребляемая мощность, не более:	
- при питании от источника переменного тока, В А	1,5
- при питании от источника постоянного тока, Вт	1

Окончание таблицы 3

Характеристика	Значение
Рабочие условия измерений:	
- температура окружающей среды, °С	от 0 до +50
- относительная влажность окружающего воздуха при	от 10 до 95
температуре +25 °C, %	
Габаритные размеры (длина×ширина×высота), мм, не более	130×82×55
Масса, кг, не более	0,35
Средняя наработка на отказ, ч	96000
Средний срок службы, лет	10

Знак утверждения типа

наносится на переднюю панель модулей методом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность модулей представлена в таблице 4.

Таблица 4 – Комплектность модулей

Наименование	Обозначение	Количество		
Модуль универсальный C-FM-UNI 1 SM	-	1 шт.		
Контроллер E-DDC3.2	-	1 шт.*		
Руководство по эксплуатации	M 02 76 10_C-FM-UNI1 SM	1 экз.		
Методика поверки	ИЦРМ-МП-136-18	1 экз.		
Примечание – * – поставляется по требованию заказчика.				

Поверка

осуществляется по документу ИЦРМ-МП-136-18 «Модули универсальные C-FM-UNI 1 SM. Методика поверки», утверждённому ООО «ИЦРМ» 24.08.2018 г.

Основное средство поверки – калибратор универсальный 9100 (регистрационный номер в Федеральном информационном фонде 25985-09).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус модулей и (или) свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к модулям универсальным C-FM-UNI 1 SM

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

Техническая документация изготовителя

Изготовитель

«SE-Elektronic GmbH», Германия

Адрес: Eythstrasse 16, 73037 Goeppingen, Germany

Телефон: +49 07161 9584-0 Факс: +49 07161 9584-45

Web-сайт: <u>www.se-elektronic.de</u> E-mail: <u>info@se-elektronic.de</u>

Заявитель

Общество с ограниченной ответственностью «ВР ГРУПП» (ООО «ВР ГРУПП»),

ИНН 9717020529

Адрес: 123610, г. Москва, Краснопресненская наб.,12, здание 1, подъезд 3, помещение 1806

Телефон: +7 (495) 150-39-83

E-mail: info@wrgp.ru

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д. 2, этаж 2, пом. I, ком. 35, 36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2018 г.