ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Генераторы сигналов высокочастотные цифровые МГКС

Назначение средства измерений

Генераторы сигналов высокочастотные цифровые МГКС (далее – генераторы) предназначены для воспроизведения сигналов произвольной формы, а также для воспроизведения сигналов синусоидальной формы с амплитудной, частотной, фазовой модуляцией или без модуляции по двум независимым каналам в магистрально-модульной аппаратуре стандарта VXI, LXI и AXIe.

Описание средства измерений

Принцип действия генераторов основан на прямом цифровом синтезе сигналов с использованием внутренней памяти и цифро-аналоговом преобразовании кодов в значение напряжения выходного сигнала.

Конструктивно генераторы выполнены в виде мезонинов, устанавливаемых на носители мезонинов (модули НМ, НМ-С, НМ-М, устройство MezaBOX или аналогичные носители мезонинов стандартов VXI, LXI или AXIe) и представляют собой лицевую панель с прикрепленной к ней печатной платой. На печатной плате мезонина размещен соединитель типа ESQT-150, обеспечивающий электропитание генератора и обмен данными между ним и носителем мезонинов. Генераторы могут применяться в составе измерительных систем различного назначения.

По условиям применения генераторы соответствуют требованиям к средствам измерений группы 3 по ГОСТ 22261-94 с диапазоном рабочих температур от +5 до +40 °C и относительной влажностью воздуха до 90 % при температуре +25 °C без предъявления требований по механическим воздействиям.

Общий вид генераторов представлен на рисунке 1. Схема пломбировки от несанкционированного доступа генераторов, установленных в устройство MezaBOX, представлена на рисунке 2, пломбировка предусмотрена на винтах крепления верхней крышки к корпусу устройства. Схема пломбировки от несанкционированного доступа генераторов, установленных на носителе мезонинных модулей типа НМ-М, представлена на рисунке 3, пломбировка предусмотрена на винтах крепления защитного кожуха к корпусу носителя.

Рисунок 1 – Общий вид генераторов сигналов высокочастотных цифровых МГКС

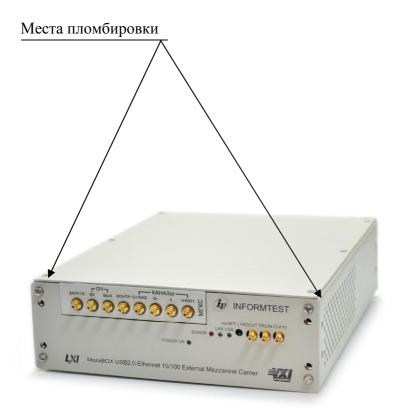


Рисунок 2 — Схема пломбировки от несанкционированного доступа генераторов, установленных в устройство MezaBOX

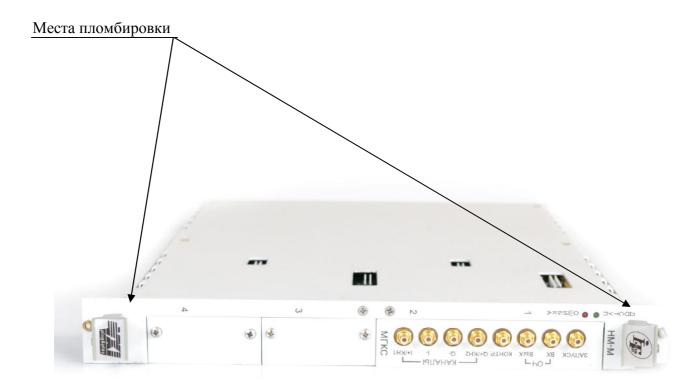


Рисунок 3 – Схема пломбировки от несанкционированного доступа генераторов, установленных в носитель мезонинных модулей НМ-М

Программное обеспечение

Генераторы работают под управлением программного обеспечения (Π O), которое выполняет функции управления режимами работы, считывания и передачи информации. Метрологически значимая часть Π O выделена в файл библиотеки математических функций: unmgqs_math.dll.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения».

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	unmgqs_math.dll	
Номер версии ПО (идентификационный код)	не ниже 1.0	
Цифровой идентификатор ПО	D77E6F03	
Алгоритм вычисления цифрового идентификатора ПО	CRC32	

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Таблица 2 - Метрологические характеристики			
Наименование характеристики	Значение		
Количество каналов	2		
Диапазон воспроизведения частоты, Гц	от 0,1 до 3,0·10 ⁸		
Пределы допускаемой относительной погрешности			
воспроизведения значений частоты (при работе от	$\pm 5 \cdot 10^{-6}$		
внутреннего генератора)			
Диапазоны воспроизведения амплитудных значений	от −1 до +1;		
напряжения переменного тока, В	от −10 до +10		
Пределы допускаемой приведенной к верхней границе			
диапазона погрешности воспроизведения амплитудных			
значений напряжения переменного тока, %:			
- для диапазона от –1 до +1 B	$\pm 0,1;$		
- для диапазона от –10 до +10 B	$\pm 0,2$		
Пределы допускаемой приведенной к верхней границе			
диапазона погрешности воспроизведения смещения	±0,2		
амплитудных значений напряжения электрического тока в	$\pm 0,2$		
диапазоне от -10 до +10 В, %			
Неравномерность АЧХ при воспроизведении			
гармонического сигнала частотой от 0,1 до 150 МГц в			
диапазоне от -1 до +1 В, дБ	1		
Неравномерность АЧХ при воспроизведении	1		
гармонического сигнала частотой от 0,1 до 25 МГц в			
диапазоне от -10 до +10 В, дБ			
Неравномерность АЧХ при воспроизведении			
гармонического сигнала частотой от 0,1 до 250 МГц в			
диапазоне от -1 до +1 В, дБ	3		
Неравномерность АЧХ при воспроизведении	3		
гармонического сигнала частотой от 0,1 до 125 МГц в			
диапазоне от -10 до + 10 В, дБ			
Уровни гармонических и негармонических искажений при			
воспроизведении синусоидального сигнала с амплитудой			
0 дБм (0,316 В) для частот, дБн*:			
- 0,1 МГц;	-65;		
- 1 MГц;	-70;		
- 10 МГц;	-65;		
- 50 МГц;	-60;		
- 100 МГц	-55		
Спектральная плотность мощности фазовых шумов при	-100		
величинах отстройки от 100 Гц до 1 МГц, дБн/Гц**	-100		
* дБн – децибел относительно несущей частоты;			
** дБн/Гц – децибел относительно несущей частоты в полосе	1 Гц		

Таблица 3 – Технические характеристики

Наименование характеристики	Значение	
Напряжение питания постоянного тока, В	-12; -5,2; +5; +12	
Сила тока потребления по цепи «+5 В», А:		
- пиковое значение	8,2	
- динамическое значение	1,0	
Сила тока потребления по цепи «-5,2 В», А:		
- пиковое значение	0,06	
- динамическое значение	0,01	
Сила тока потребления по цепи «+12 В», А:		
- пиковое значение	0,34	
- динамическое значение	0,03	
Сила тока потребления по цепи «-12 В», А:		
- пиковое значение	0,2	
- динамическое значение	0,01	
Потребляемая мощность, Вт, не более	46,6	
Габаритные размеры (длина × ширина × высота), мм, не более	$271\times101\times22$	
Масса, кг, не более	0,36	
Рабочие условия эксплуатации:		
- температура окружающего воздуха, °С	от +5 до +40	
- относительная влажность при температуре +25 °C, %, не более	90	
- атмосферное давление, кПа	от 84,0 до 106,7	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Генератор сигналов высокочастотный цифровой МГКС	ФТКС.468266.058	1 шт.
Комплект ПО модулей Информтест	ФТКС.85001-01	1 шт.
Генератор сигналов высокочастотный цифровой МГКС. Руководство по эксплуатации	ФТКС.468266.058РЭ	1 экз.
Генератор сигналов высокочастотный цифровой МГКС. Паспорт	ФТКС.468266.058ПС	1 экз.
Генератор сигналов высокочастотный цифровой МГКС Управляющая панель мезонина Руководство оператора	ФТКС.65058-01 34 01	1 экз.
Драйвер мезонина МГКС. Руководство системного программиста	ФТКС.75058-01 32 01	1 экз.
Опись компакт-диска (CD) «Комплект ПО модулей Информтест»	ФТКС.85001-01 90ОП1	1 экз.
Кабель SMB-BNC	ФТКС.685661.004	3 шт.
Кабель SMB-SMB	ФТКС.685661.009	3 шт.
Кабель SMB-SMA	ФТКС.685661.085	1 шт.
Кабель BNC-BNC	UNC4.853.355-01	1 шт.
Кабель SMB-SLS425	UNC4.853.719	1 шт.

Поверка

осуществляется по разделу 5 «Методика поверки» документа «Генератор сигналов высокочастотный цифровой МГКС. ФТКС.468266.058РЭ», утвержденного ООО «АСК Экспресс» 14 сентября 2018 г.

Основные средства поверки:

- мультиметр 3458А (рег. № 25900-03);
- анализатор сигналов N9020A с опцией измерения фазовых шумов N9068A (рег. № 56557-14);
 - частотомер электронно-счётный CNT-90 (рег.№ 41567-09);
 - стандарт частоты рубидиевый FS725 (рег. № 31222-06).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых генераторов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к генераторам сигналов высокочастотным цифровым МГКС

ГОСТ Р 51884-2002 Магистраль VME, расширенная для контрольно-измерительной аппаратуры (магистраль VXI). Общие технические требования

ГОСТ 22261-94 ГСИ. Средства измерений электрических и магнитных величин. Общие технические условия

ФТКС.468266.058ТУ Генератор сигналов высокочастотный цифровой МГКС. Технические условия

Изготовитель

Общество с ограниченной ответственностью «VXI-Системы» (ООО «VXI-Системы») ИНН 7735126740

ИНН //35126/40

Адрес: 124482, г. Москва, г. Зеленоград, Савёлкинский проезд, д. 4, этаж 6, помещ. XIV, ком. 1

Телефон/факс: (495) 983-10-73

E-mail: inftest@inftest.ru

Испытательный центр

Общество с ограниченной ответственностью «Автоматизированные системы контроля Экспресс» (ООО «АСК Экспресс»)

Адрес: 111123, г. Москва, шоссе Энтузиастов, д.64

Телефон: +7 (495) 504-15-11

Аттестат аккредитации ООО «АСК-Экспресс» по проведению испытаний средств измерений в целях утверждения типа RA.RU.312222 от 04.07.2017 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов

М.п. «___ » ____ 2018 г.