УТВЕРЖДАЮ

Начальник ФГБУ «ГНМЦ» Минобороны России В.В. Швыдун

MA

2015 г.

инструкция

Установка для измерения параметров сеточных поляризаторов и полосовых фильтров ЯКУЛ.434881.003

Методика поверки

СОДЕРЖАНИЕ

	Стр.
1 Общие сведения	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования к квалификации поверителей	4
5 Требования безопасности	4
6 Условия поверки	4
7 Подготовка к поверке	5
8 Проведение поверки	5
9 Оформление результатов поверки	9

1. ОБЩИЕ СВЕДЕНИЯ

- 1.1 Настоящая методика поверки распространяется на установку для измерения параметров сеточных поляризаторов и полосовых фильтров ЯКУЛ.434881.003 (далее установка) и устанавливает порядок и объем ее первичной и периодической поверки.
 - 1.2 Интервал между поверками 1 год.

2. ОПЕРАЦИИ ПОВЕРКИ

2.1 При поверке выполняют операции, представленные в таблице 1.

Таблипа 1

	Номер пунк-	Проведение операции при	
Наименование операции	та документа по поверке	первичной поверке	периодиче- ской поверке
1. Внешний осмотр	8.1	да	да
2. Опробование	8.2	да	да
3. Проверка ПО	8.3.4	да	да
4. Определение метрологических характеристик	8.3		
4.1 Определение относительной погрешности установки частоты выходного сигнала установки	8.3.1	да	да
4.2 Определение КСВН измерительных портов сменных преобразователей установки	8.3.2	да	да
4.3 Определение абсолютной погрешности измерений модуля коэффициента передачи в диапазоне измерений	8.3.3	да	да

3. СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленные в таблице 2.

Таблица 2

№ пункта методики поверки	Наименование и тип основных или вспомогательных средств поверки; номер документа, регламентирующего технические требования к рабочим эталонам или вспомогательным средствам; разряд по государственной поверочной схеме и (или) метрологические и основные технические характеристики средства поверки
1	2
8.3.1	Частотомер электронно-счетный РЧ3-72 (из состава УВТ «Браслет- 10 Д»): диапазон измерений частоты от $118,1$ до $178,4$ ГГц, пределы допускаемой относительной погрешности измерений частоты $\pm 5 \cdot 10^{-7}$; Частотомер электронно-счетный РЧ3-73 (из состава УВТ «Браслет- 10 Д»): диапазон измерений частоты от $118,1$ до $178,4$ ГГц, пределы допускаемой относительной погрешности измерений частоты $\pm 5 \cdot 10^{-7}$
8.3.2	Линия измерительная P1-41: диапазон частот от 78,33 до 118,1 ГГц, сечение волновода $(2,2\times1,2)$ мм, собственный $K_{\text{сти}}$ линии, не более 1,05, непостоянство связи зонда с полем, не более 3%, пределы допускаемой абсолютной погрешности определения положения зонда вдоль измерительной линии $\pm0,01$ мм

Продолжение таблицы 2

1	2		
	Линия измерительная P1-42: диапазон частот от 118,1 до 178,4 ГГц, сечение волновода $(1,6\times0,8)$ мм, собственный $K_{\text{сти}}$ линии, не более 1,05, непостоянство связи зонда с полем, не более 3%, пределы допускаемой абсолютной погрешности определения положения зонда вдоль измерительной линии в рабочих условиях $\pm 0,01$ мм. Измеритель отношения напряжений B8-7: диапазон измеряемых отношений от 1 до 31 600, диапазон входных напряжений от 0,2 до 10 000 мкВ, пределы допускаемой относительной погрешности измерений отношений напряжений по цифровому индикатору относительно точки 1,0 $\pm 0,9$ %		
8.3.3	Установка высшей точности «Браслет-10Д» (далее - УВТ): диапазон частот от 78,33 до 178,4 ГГц		

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
- 3.3 Используемые средства поверки должны быть поверены в соответствии с требованиями приказа Минпромторга России № 1815 от 02.07.2015 г. и иметь действующее свидетельство о поверке (знак поверки).

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К проведению поверки установки допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «ПОТ Р М-016-2001. РД 153-34.0-03.150-00. Межотраслевыми Правилами по охране труда (Правила безопасности) при эксплуатации электроустановок». ГОСТ 12.2.007.0-75, ГОСТ Р12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование.
- 5.2 Запрещается проведение измерений при отсутствии или неисправности заземления аппаратуры.

6. УСЛОВИЯ ПОВЕРКИ

6.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, °C 20 \pm 5; - относительная влажность воздуха, % 65 \pm 15; - атмосферное давление, мм рт. ст. 750 \pm 30;

- параметры питания от сети переменного тока:

напряжение, В
 частота, Γц
 от 198 до 242;
 от 49,5 до 50,5.

7. ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- выполнить операции, оговоренные в эксплуатационной документации (ЭД) на поверяемую установку по ее подготовке к поверке;
- выполнить операции, оговоренные в ЭД на применяемые средства поверки по их подготовке к измерениям;
- осуществить предварительный прогрев приборов для установления их рабочего режима.

8. ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1 При внешнем осмотре проверить:
- наличие товарного знака изготовителя, серийного номера, года изготовления;
- соответствие комплектности требованиям документации;
- состояние лакокрасочного покрытия;
- чистоту гнезд, разъемов, клемм;
- отсутствие механических, электрических, химических и тепловых повреждений.
- 8.1.2 Результаты внешнего осмотра считать положительными, если выполняются все перечисленные требования.
 - 8.2 Опробование
 - 8.2.1 Собрать установку согласно эксплуатационной документации.

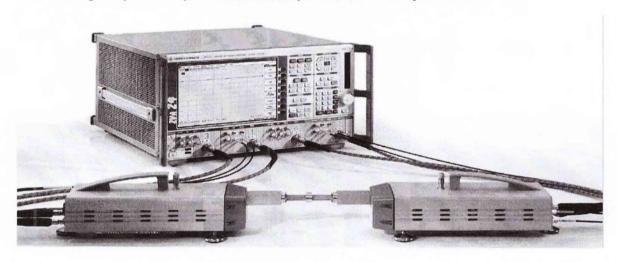


Рисунок 1 - Общий вид собранной установки

- 8.2.2 До включения установки провести следующие действия: включить питание используемых блоков расширения диапазона частот.
- 8.2.3 Включить установку: для чего на передней панели векторного анализатора цепей перевести переключатель «Ф» в положение «ВКЛ.», при этом загорится зеленый светодиод

На экране векторного анализатора цепей должна появиться панель управления установкой.

- 8.2.4 Результаты поверки считать положительными, если не отображается информация об ошибках, отображается панель управления установкой и версия ПО соответствует описанию типа (3.50).
 - 8.3 Определение метрологических характеристик
- 8.3.1 Определение относительной погрешности установки частоты выходного сигнала установки
- 8.3.1.1 Подключить сменные преобразователи ZVA-Z110 к анализатору цепей. Подготовить установку к измерениям в соответствии с РЭ на установку.
- 8.3.1.2 Подсоединить частотомер РЧ3-72 к первому измерительному порту сменного преобразователя ZVA-Z110.
- $8.3.1.3~\mathrm{B}$ программе выбрать в меню режим измерения на фиксированной частоте и установить частоту сигнала $78,33~\Gamma\Gamma$ ц.
- 8.3.1.4 Повторить процедуру измерений частоты выходного сигнала установки на следующих частотных точках 80.0 ГГц и далее через 5 ГГц до конечной частоты 110.0 ГГц.
- 8.3.1.5 Повторить измерения по п.п. 8.3.1.2...8.3.1.4 последовательно присоединяя частотомер ко второму сменному преобразователю.
- 8.3.1.6 Подключить сменные преобразователи ZVA-Z170 к анализатору цепей. Подготовить установку к измерениям в соответствии с РЭ на установку.
- 8.3.1.7 Подсоединить частотомер РЧ3-73 к первому измерительному порту сменного преобразователя ZVA-Z710.
- 8.3.1.8 В программе выбрать в меню режим измерения на фиксированной частоте и установить частоту сигнала 118,1 ГГц.
- 8.3.1.9 Повторить процедуру измерений частоты выходного сигнала установки на следующих частотных точках 120,0 ГГц и далее через 5 ГГц до конечной частоты 170,0 ГГц.
- 8.3.1.10 Рассчитать относительную разность значений частоты установленной на выходе установки и измеренной частотомером:

$$\delta_f = \frac{f_y - f_u}{f_u},\tag{1}$$

где $f_{_{\rm v}}$ – значение частоты сигнала, измеренное частотомером, Γ ц;

 f_y — значение частоты сигнала, установленное на выходе установки, Γ ц.

8.3.1.11 Рассчитать суммарную погрешность результата измерений частоты выходного сигнала по формуле 2.

$$\delta_{f\Sigma} = \sqrt{\delta_f^2 + \delta_{fq}^2} \tag{2}$$

где $\delta_{\scriptscriptstyle fq}$ - погрешность измерений частотомера.

- 8.3.1.12 Результаты поверки считать положительными, если значения относительной погрешности установки частоты $\delta_{\it f}$ находится в пределах $\pm 1\cdot 10^{-5}$.
- 8.3.2 Определение КСВН измерительных портов сменных преобразователей установки
- 8.3.2.1 Подготовить измерительные линии P1-41 и P1-42 к измерениям КСВН методом «максимума-минимума» в соответствии с РЭ на них.
- 8.3.2.2 Подсоединить измерительную линию P1-41 к первому измерительному порту сменного преобразователя ZVA-Z110.
- 8.3.2.3 Провести измерение КСВН первого измерительного порта сменного преобразователя ZVA-Z110 на следующих частотных точках: 78,33, 80,0 ГГц и далее через 5 ГГц до конечной частоты 110,0 ГГц.
 - 8.3.2.4 Повторить процедуру измерений КСВН для второго измерительного порта

сменного преобразователя ZVA-Z110. Измеренные значения КСВН занести в протокол.

- 8.3.2.5 Подсоединить измерительную линию P1-42 к первому измерительному порту сменного преобразователя ZVA-Z170.
- 8.3.2.6 Провести измерение КСВН первого измерительного порта сменного преобразователя ZVA-Z170 на следующих частотных точках: 118,1, 120,0 ГГц и далее через 5 ГГц до конечной частоты 170 ГГц.
- 8.3.2.7 Повторить процедуру измерений КСВН для второго измерительного порта сменного преобразователя ZVA-Z170. Измеренные значения КСВН занести в протокол.
- 8.3.2.8 Результаты поверки считать положительными, если КСВН измерительных портов сменных преобразователей установки не превышает 1,5.
- 8.3.3 Определение абсолютной погрешности измерений модуля коэффициента передачи в диапазоне измерений
- 8.3.3.1 Подготовить УВТ в соответствии с РЭ на нее. Вычисление значений коэффициента передачи проводить по формуле:

$$A_{ATT} = 10 \cdot \lg \frac{P_{BblX}}{P_{BX}}, \tag{3}$$

где P_{BX} и P_{BblX} — мощность СВЧ, подаваемая на вход аттенюатора поляризационного и снимаемая с его выхода, соответственно.

- 8.3.3.2 Провести измерения модуля коэффициента передачи аттенюаторов АП-19 и АП-20 на УВТ. Для этого провести измерения ослаблений аттенюаторов на следующих частотных точках:
 - для АП-20: 78,33, 80,0 ГГц и далее через 5 ГГц до конечной частоты 110,0 ГГц;
- для АП-19: 118,1, 120,0 ГГц и далее через 5 ГГц до конечной частоты 170 ГГц для следующих значений ослаблений: 1,0, 2,0, 3,0, 4,0, 5,0 дБ и далее через 5 дБ до значения ослабления 60 дБ (не допуская поворотов по часовой стрелке, совместить риску лимба с показаниями шкалы аттенюатора «1», «2» и т.д., таким образом исключая влияние люфта червячного механизма на погрешность установки коэффициента передачи). Для каждого выставленного значения ослабления провести не менее трех измерений с переподключением аттенюатора поляризационного (A_1, A_2, A_3). Значения ослаблений рассчитать по формуле (3. За результат измерений для каждого выставленного значения ослабления записать среднее значение, вычисленное по формуле:

$$A_{cp_VBT} = \frac{A_1 + A_2 + A_3}{3},\tag{4}$$

где A_1, A_2, A_3 - три измерения с переподключением аттенюатора.

8.3.3.3 Полученные значения ослаблений и рассчитанные средние значения ослабления занести в протокол.

8.3.3.4 Вычислить среднеквадратическое отклонение результатов измерений на УВТ по формуле:

$$S_A = \sqrt{\frac{1}{2} \cdot \sum_{i=1}^{3} (A_i - A_{cp_VBT})^2}$$
 (5)

8.3.3.5 Вычислить суммарную погрешность определения значений ослабления аттенюатора на УВТ по формуле:

$$\Delta_{\Sigma_{YBT}} = \Delta_{YBT} + S_A, \tag{6}$$

где $\Delta_{y_{BT}}$ - рассчитанная погрешность измерений модуля коэффициента передачи на УВТ в дБ.

8.3.3.6 Подключить к установке сменные преобразователи ZVA-Z110 (ZVA-Z170). Включить аттенюатор АП-20 (АП-19) в измерительную схему (

8.3.3.7 Рисунок 2). Провести измерения модуля коэффициента передачи аттенюатора

(8)

 $A_{\text{уст}}$ на частотных точках 78,33, 80,0 ГГц и далее через 5 ГГц до конечной частоты 110,0 ГГц для АП-20 (118,1, 120,0 ГГц и далее через 5 ГГц до конечной частоты 170 ГГц для АП-19) при значениях ослаблений: 1,0, 2,0, 3,0, 4,0, 5,0 дБ и далее через 5 дБ до значения ослабления 60 дБ (не допуская поворотов по часовой стрелке, совместить риску лимба с показаниями шкалы аттенюатора «1», «2» и т.д., таким образом, исключая влияние люфта червячного механизма на погрешность установки коэффициента передачи).

8.3.3.8 Рассчитать абсолютную разницу измерений модуля коэффициента передачи на УВТ и установке по формуле:

$$\Delta_A = |A_{cp_VBT} - A_{Vcm}|, \tag{7}$$

где A_{cp-yBT} — значение модуля коэффициента передачи, измеренное на УВТ, дБ;

 $A_{y_{cm}}$ — значение модуля коэффициента передачи, измеренное на установке, дБ.

8.3.3.9 Рассчитать абсолютную погрешность измерений модуля коэффициента передачи по формуле:

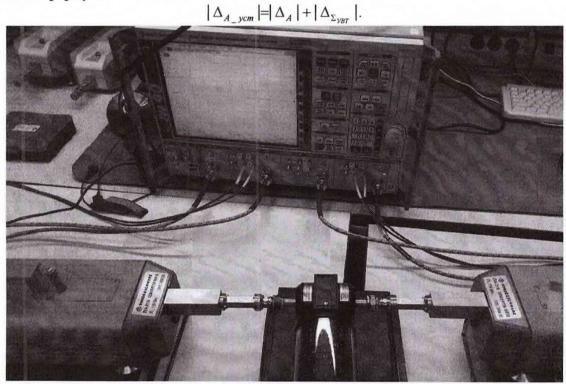


Рисунок 2 - Схема подключения аттенюаторов

8.3.3.10 Результаты поверки считать положительными, если значения абсолютной погрешности измерений модуля коэффициента передачи Δ_{A_ycm} в диапазоне измерений от минус 40 до 0 дБ находятся в допускаемых пределах $\pm (0.5+0.01\cdot |\mathrm{Ax}|)$ и в диапазоне измерений от минус 60 до минус 40 дБ находятся в допускаемых пределах $\pm (0.04\cdot |\mathrm{Ax}|)$, где Ax измеряемое значение модуля коэффициента передачи.

8.3.4 Проверка ПО

8.3.4.1 Проверку номера версии и контрольной суммы исполняемого кода (цифрового идентификатора ПО) выполнить следующим образом:

Осуществить проверку соответствия следующих идентификационных данных ПО:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;

- цифровой идентификатор метрологически значимой части ПО (контрольная сумма исполняемого кода);
 - алгоритм вычисления цифрового идентификатора ПО.
- 8.3.4.2 Результаты проверки считать положительными, если полученные идентификационные данные программных компонентов (номер версий и цифровой идентификатор) соответствуют идентификационным данным, записанным таблице 3.

Таблица 3

Идентификационное наименование ПО	Номер версии ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления идентификатора ПО
Rohde&Schwarz Network analyzer	3.50	0864486EA1B9ECE95B98 AFF45DE880C2	MD5

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки оформляется свидетельство о поверке, на верхнюю лицевую панель установки наносится знак поверки в виде наклейки.
 - 9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.
- 9.3 В случае отрицательных результатов поверки поверяемая установка к дальнейшему применению не допускается. На такую установку выдается извещение об её непригодности к применению с указанием причин забраковывания.

Зам. начальника отдела ФГБУ «ГНМЦ» Минобороны России

Научный сотрудник ФГБУ «ГНМЦ» Минобороны России А.С. Бондаренко

А.В. Козюкова