Федеральное агентство по техническому регулированию и метрологии

УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ – ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО УНИТАРНОГО ПРЕДПРИЯТИЯ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ ИМ.Д.И.МЕНДЕЛЕЕВА»

(УНИИМ – филиал ФГУП «ВНИИМ им.Д.И.Менделеева»)

Согласовано

Директор УНИИМ – филиала ФГУП «ВНИИМ им. Д.И.Менделеева»

Е.П. Собина

«30» <u>сентября</u> 2022 г.

«ГСИ. Анализаторы СВЧ плазменные САМ-ДТ-01-2.

Методика поверки»

МП 85-251-2021

Екатеринбург

ПРЕДИСЛОВИЕ

- 1. **РАЗРАБОТАНА** Уральским научно-исследовательским институтом метрологии филиалом Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (УНИИМ филиал ФГУП «ВНИИМ им. Д.И. Менделеева).
- 2. **ИСПОЛНИТЕЛЬ**: зам. зав. лаб. 251 УНИИМ филиала ФГУП «ВНИИМ им. Д.И. Менделеева» Е.В. Вострокнутова.
- 3. **СОГЛАСОВАНА** директором УНИИМ филиала ФГУП «ВНИИМ им. Д.И. Менделеева» в 2022 г.

СОДЕРЖАНИЕ

1	общие положения4
2	НОРМАТИВНЫЕ ССЫЛКИ5
3	ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ5
4	ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ5
5	требования к специалистам, осуществляющим поверку5
6	МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ 6
7	требования (условия) по обеспечению безопасности проведения поверки 7
8	внешний осмотр средства измерений
9	ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ8
10	проверка программного обеспечения
11	ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ8
12 ТРЕБО	ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ОВАНИЯМ9
13	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ10
ПРИЛ	ОЖЕНИЕ А11
прил	ОЖЕНИЕ Б

Дата введения в действие:

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на анализаторы СВЧ плазменные САМ-ДТ-01-2 (зав. № 001, зав. № 002, зав. № 003) (далее анализаторы), выпускаемые фирмой ООО «Диагностические технологии», Россия. Анализаторы подлежат первичной (до ввода в эксплуатацию и после ремонта) и периодической поверке. Поверка анализаторов должна производиться в соответствии с требованиями настоящей методики.
- 1.2 При проведении поверки прослеживаемость должна обеспечиваться к ГЭТ 176-2019 «Государственный первичный эталон единиц массовой (молярной, атомной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии» путем применения стандартных образцов утвержденных типов с установленной прослеживаемостью к ГЭТ 176-2019 в соответствии с приказом Росстандарта Российской Федерации от 19.02.2021 г. № 148 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в жидких и твердых веществах и материалах».
 - 1.3 В настоящей методике поверки реализована поверка методом прямых измерений.
- 1.4 Настоящая методика поверки применяется для поверки анализаторов, используемых в качестве рабочих средств измерений. В результате поверки должны быть подтверждены метрологические требования, приведенные в таблице 1.

Таблица 1 – Метрологические характеристики

Uoynyonoyyyo yonoymonyonyyyy	Значение			
Наименование характеристики	зав. № 001	зав. № 002	зав. № 003	
Диапазон измерений массовой доли меди (Cu), млн ⁻¹ :				
- в растворенном виде;		от 0,5 до 3,0		
- в растворенном виде и твердых частицах		от 0,3 до 3,2		
Пределы допускаемой абсолютной погрешности				
измерений массовой доли меди (Cu), млн ⁻¹ :				
- в растворенном виде;		$\pm 0,30$		
- в растворенном виде и твердых частицах	±	$(0.08 + 0.53 \cdot 0.00)$	ω)	
Диапазон измерений массовой доли железа (Fe), млн ⁻¹ :				
- в растворенном виде;	от 0,5 до 3,0			
- в растворенном виде и твердых частицах	от 0,6 до 6,2			
Пределы допускаемой абсолютной погрешности				
измерений массовой доли железа (Fe), млн ⁻¹ :				
- в растворенном виде;		$\pm 0,30$		
- в растворенном виде и твердых частицах $\pm (0.06 + 0.53 \cdot \omega)$			ω)	
Диапазон измерений массовой доли магния (Mg), млн ⁻¹ :				
- в растворенном виде;		от 0,5 до 3,0		
- в растворенном виде и твердых частицах		от 0,1 до 1,3		
Пределы допускаемой абсолютной погрешности массовой				
доли магния (Mg), млн ⁻¹ :				
- в растворенном виде;		$\pm 0,30$		
- в растворенном виде и твердых частицах	- в растворенном виде и твердых частицах $\pm (0.02 + 0.53 \cdot \omega)$			
где ω - результат измерений массовой доли элементов, млн	1			

2 Нормативные ссылки

- 2.1 В настоящей методике поверки использованы ссылки на следующие документы:
- ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности»;
- Приказ Росстандарта Российской Федерации 19.02.2021 г. № 148 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в жидких и твердых веществах и материалах»;
- Приказ Министерства труда и Социальной защиты РФ от 15.12.2020 N 903н «Об утверждении Правил по охране труда при эксплуатации электроустановок».

3 Перечень операций поверки

3.1 Для поверки анализаторов должны быть выполнены операции, указанные в таблице 2.

Таблица 2 - Операции поверки

	1	ость проведения аций при	Номер раздела (пункта) методики поверки, в	
Наименование операции	первичной поверке	периодической поверке	соответствии с которым выполняется операция поверки	
Внешний осмотр	да	да	8	
Подготовка к поверке и опробование средства измерений	да	да	9	
Проверка программного обеспечения	да	да	10	
Определение метрологических характеристик средства измерений	да	да	11	
Подтверждение соответствия средства измерений метрологическим требованиям	да	да	12	

3.2 В случае невыполнения требований хотя бы к одной из операций проводится настройка анализатора в соответствии с руководством по эксплуатации (далее – РЭ). В дальнейшем все операции повторяются вновь, в случае повторного невыполнения требований хотя бы к одной из операций поверка прекращается, анализатор бракуется.

4 Требования к условиям проведения поверки

- 4.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающей среды, °С

от +15 до +25

- относительная влажность, %, не более

80

5 Требования к специалистам, осуществляющим поверку

5.1 К проведению работ по поверке анализаторов допускаются лица, прошедшие обучение в качестве поверителя, изучившие РЭ на анализаторы и настоящую методику поверки.

6 Метрологические и технические требования к средствам поверки

6.1 При проведении поверки применяют средства поверки согласно таблице 3.

Таблица 3 – Метрологические требования к средствам поверки

Операции поверки, требующие применения средств поверки	Метрологические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Средство измерений температуры и относительной влажности с диапазонами измерений, охватывающими условия по п. 4;	Термогигрометр электронный «CENTER» 313, рег. №22129-09
Раздел 9 Подготовка к поверке и опробование	- Стандартный образец состава продуктов изнашивания авиационного газотурбинного двигателя (СОЧПИ ГТД СО УНИИМ) ГСО 10696-2015: интервал допускаемых аттестованных значений массовой доли меди (Си) от 2,0 до 4,0 %, границы относительной погрешности аттестованного значений массовой доли меди (Си) (при Р=0,95) ± 5,0 %; интервал допускаемых аттестованных значений массовой доли железа (Fe) от 5,0 до 7,0 %, границы относительной погрешности аттестованного значения массовой доли железа (Fe) (при Р=0,95) ± 3,0 %; интервал допускаемых аттестованных значений массовой доли магния (Мg) от 1,0 до 2,0 %, границы относительной погрешности аттестованного значения массовой доли магния (Мg) (при Р=0,95) ± 8,0 %; - Стандартный образец содержания металлов в нефтепродуктах (СО СМН-ПА) ГСО 10066-2012: интервал аттестованных значений массовой доли меди (Си) от 98 до 100 млн ⁻¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли меди (Си) (при Р=0,95) ± 4 %; интервал аттестованных значений массовой доли железа (Fe) от 98 до 100 млн ⁻¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли железа (Fe) (при Р=0,95) ± 4 %; интервал аттестованных значений массовой доли магния (Mg) от 98 до 100 млн ⁻¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли железа (Fe) (при Р=0,95) ± 4 %; интервал аттестованных значений массовой доли магния (Mg) от 98 до 100 млн ⁻¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли магния (Mg) (при Р=0,95)	ГСО 10066-2012 Весы лабораторные
	класса точности по ГОСТ OIML R 76-1-2011 - Весы неавтоматического действия I (специального)	ВЛТЭ-6100, рег. №21370-06 Весы электронные
	класса точности по ГОСТ OIML R 76-1-2011	GX-1000, per. №20325-06
	- Масло авиационное чистое	Масло авиационное MC-8П по ГОСТ Р 55775-2013
	- Колбы конические вместимостью: 100; 500; 1000 см ³	Колбы конические по ГОСТ 25336-82
	 Ультразвуковая ванна, обеспечивающая перемешивание жидкостей объемом до 1000 см³ 	Ультразвуковая ванна

Операции поверки, требующие применения средств поверки	Метрологические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
Раздел 11 Определение метрологических характеристик средства измерений	- Стандартный образец состава продуктов изнашивания авиационного газотурбинного двигателя (СОЧПИ ГТД СО УНИИМ) ГСО 10696-2015: интервал допускаемых аттестованных значений массовой доли меди (Си) от 2,0 до 4,0 %, границы относительной погрешности аттестованного значений массовой доли меди (Си) (при P=0,95) ± 5,0 %; интервал допускаемых аттестованных значений массовой доли железа (Fe) от 5,0 до 7,0 %, границы относительной погрешности аттестованного значения массовой доли железа (Fe) (при P=0,95) ± 3,0 %; интервал допускаемых аттестованных значений массовой доли магния (Мg) от 1,0 до 2,0 %, границы относительной погрешности аттестованного значения массовой доли магния (Мg) (при P=0,95)	ГСО 10696-2015
	± 8,0 %; - Стандартный образец содержания металлов в нефтепродуктах (СО СМН-ПА) ГСО 10066-2012: интервал аттестованных значений массовой доли меди (Си) от 98 до 100 млн¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли меди (Си) (при Р=0,95) ± 4 %; интервал аттестованных значений массовой доли железа (Fe) от 98 до 100 млн¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли железа (Fe) (при Р=0,95) ± 4 %; интервал аттестованных значений массовой доли магния (Мg) от 98 до 100 млн¹ (мг/кг), границы относительной погрешности аттестованного значения массовой доли магния (Мg) (при Р=0,95) ± 4 %	ΓCO 10066-2012

Примечание - Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

6.2 При выборе средств поверки рекомендуется отдавать приоритет стандартным образцам с установленной прослеживаемостью к государственным первичным эталонам единиц величин.

7 Требования (условия) по обеспечению безопасности проведения поверки

7.1 При проведении поверки должны быть соблюдены требования Приказа Министерства труда и Социальной защиты РФ от 15.12.2020 N 903н «Об утверждении Правил по охране труда при эксплуатации электроустановок», требования ГОСТ 12.2.007.0.

8 Внешний осмотр средства измерений

- 8.1 При внешнем осмотре устанавливают:
- соответствие внешнего вида сведениям, приведенным в описании типа;
- отсутствие видимых повреждений анализаторов;
- соответствие комплектности, указанной в РЭ;
- четкость обозначений и маркировки.
- 8.2 В случае, если при внешнем осмотре выявлены повреждения или дефекты, способные оказать влияние на безопасность проведения поверки или результаты поверки, поверка может быть продолжена только после устранения этих повреждений или дефектов.

9 Подготовка к поверке и опробование средства измерений

- 9.1 Контроль условий поверки
- 9.1.1 Проводят контроль условий поверки с помощью термогигрометра в соответствии с таблицей 3. Результаты измерений температуры окружающей среды и относительной влажности должны соответствовать условиям п. 4 настоящей методики поверки.
 - 9.2 Подготовка анализатора и стандартных образцов
- 9.2.1 Анализатор готовят в соответствии с РЭ. При необходимости перед проведением поверки должна быть проведена градуировка анализатора в соответствии с РЭ.
- 9.2.2 Готовят контрольные растворы из стандартных образцов в соответствии с приложением А настоящей методики поверки.
 - 9.3 Опробование
- 9.3.1 При опробовании проводят проверку работоспособности органов управления и регулировки анализатора в соответствии с РЭ.

10 Проверка программного обеспечения

10.1 Проводят проверку идентификационных данных программного обеспечения (далее – Π O) анализатора: в строке команд выбирают пункт «О программе». Наименование и номер версии Π O анализатора должны соответствовать требованиям, приведенным в таблице 4.

Таблица 4 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение			
идентификационные данные (признаки)	зав. № 001	зав. № 002	зав. № 003	
Идентификационное наименование ПО	Регистрация			
Номер версии (идентификационный номер) ПО	ии (идентификационный номер) ПО 2.0.1		-	
Цифровой идентификатор ПО				

11 Определение метрологических характеристик средства измерений

- 11.1 Проверка абсолютной погрешности измерений массовой доли элементов
- 11.1.1 Проверка абсолютной погрешности измерений массовой доли элементов в растворенном виде

Для определения абсолютной погрешности измерений массовой доли элементов в растворенном виде используют контрольные растворы СМН-0,5, СМН-1, СМН-3, приготовленные из ГСО 10066-2012 в соответствии с приложением А настоящей методики поверки.

В соответствии с РЭ на анализаторы проводят не менее 5 измерений массовой доли элементов (Cu, Fe, Mg) в каждом контрольном растворе.

11.1.2 Проверка абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах

Для определения абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах используют контрольные растворы МОС-03, МОС-1, МОС-2, МОС-3, приготовленные из ГСО 10696-2015 в соответствии с приложением А настоящей методики поверки.

В соответствии с РЭ на анализаторы проводят не менее 5 измерений массовой доли элементов (Cu, Fe, Mg) в каждом контрольном растворе.

Примечание: рекомендуется провести проверку результатов измерений массовых долей элементов в контрольных растворах, полученных в условиях повторяемости на наличие выбросов по критерию Граббса по приложению Б настоящей методики поверки.

- 11.2 Проверка диапазона измерений массовой доли элементов
- 11.2.1 Проверку диапазона измерений массовой доли элементов в растворенном виде

Проверку диапазона измерений массовой доли элементов в растворенном виде проводят одновременно с проверкой абсолютной погрешности измерений массовой доли элементов растворенном виде по п.11.1.1.

11.2.2 Проверку диапазона измерений массовой доли элементов в растворенном виде и твердых частицах

Проверку диапазона измерений массовой доли элементов в растворенном виде и твердых частицах проводят одновременно с проверкой абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах по п.11.1.2.

12 Подтверждение соответствия средства измерений метрологическим требованиям

12.1 Рассчитывают абсолютную погрешность измерений массовой доли k-го элемента в i-ом контрольном растворе по формуле

$$\Delta_{\omega_{ki}} = \frac{\frac{t \cdot S_{\omega_{ki}}}{\sqrt{n}} + \left(\left|\overline{\omega}_{ki} - A_{\mu_{ki}}\right| + \left|\Delta_{A_{\mu_{ki}}}\right|\right)}{\left[\frac{S_{\omega_{ki}}}{\sqrt{n}} + \frac{\left(\left|\overline{\omega}_{ki} - A_{\mu_{ki}}\right| + \left|\Delta_{A_{\mu_{ki}}}\right|\right)}{\sqrt{3}}\right]} \cdot \sqrt{\frac{\left(\left|\Delta_{A_{\mu_{ki}}}\right| + \left|\overline{\omega}_{ki} - A_{\mu_{ki}}\right|\right)^{2}}{3} + \frac{S_{\omega_{ki}}^{2}}{n}},$$
(1)

где A_{gki} - действительное значение массовой доли k-го элемента в i-ом контрольном растворе, рассчитанное по приложению A настоящей методики поверки, млн⁻¹;

 $\Delta_{A_{gki}}$ - абсолютная погрешность приготовления *i*-го контрольного раствора для *k*-го элемента, рассчитанная по приложению A настоящей методики поверки, млн⁻¹;

t — коэффициент Стьюдента, который зависит от доверительной вероятности P и количества результатов измерений n, при n=5 и P=0,95 коэффициент Стьюдента t=2,78;

 $S_{\omega_{ki}}$ - среднее квадратическое отклонение (СКО) результатов измерений массовой доли k-го элемента в i-ом контрольном растворе, млн $^{-1}$, рассчитываемое по формуле

$$S_{\omega_{ki}} = \sqrt{\frac{\sum_{j=1}^{n} (\omega_{kij} - \overline{\omega}_{ki})^2}{n-1}},$$
(2)

где $\overline{\omega}_{ki}$ - среднее арифметическое значение результатов измерений массовой доли k-го элемента в i-ом исходном контрольном растворе, млн $^{-1}$, рассчитываемое по формуле

$$\overline{\omega}_{ki} = \frac{\sum_{j=1}^{n} \omega_{kij}}{n},\tag{3}$$

где ω_{kij} - j-ый результат измерения массовой доли k-го элемента в i-ом исходном контрольном растворе, $MЛH^{-1}$;

j = 1, ..., n, n - количество измерений.

- 12.2 Полученные значения абсолютной погрешности измерений массовой доли элементов в растворенном виде должны удовлетворять требованиям таблицы 1.
- 12.3 Полученные значения абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах должны удовлетворять требованиям таблицы 1.
- За диапазон измерений анализатора принимают диапазон измерений массовой доли элементов в растворенном виде, приведенный в таблице 1, если полученные значения абсолютной погрешности измерений массовой доли элементов в растворенном виде, рассчитанные по формуле (1), удовлетворяют требованиям таблицы 1.
- За диапазон измерений анализатора принимают диапазон измерений массовой доли элементов в растворенном виде и твердых частицах, приведенный в таблице 1, если полученные значения абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах, рассчитанные по формуле (1), удовлетворяют требованиям таблицы 1.

13 Оформление результатов поверки

- 13.1 Оформляют протокол проведения поверки в произвольной форме.
- 13.2 При положительных результатах поверки средство измерений признают пригодным к применению.
- 13.3 Нанесение знака поверки на анализаторы не предусмотрено. Пломбирование анализаторов не предусмотрено.
- 13.4 При отрицательных результатах поверки средство измерений признают непригодным к применению.
- 13.5 По заявке заказчика при положительных результатах поверки оформляется свидетельство о поверке, при отрицательных - извещение о непригодности
- 13.6 Сведения о результатах поверки передают в Федеральный информационный фонд по обеспечению единства измерений в соответствии с установленным порядком.

Зам. зав. лаб. 251 УНИИМ – филиала ФГУП «ВНИИМ им.Д.И.Менделеева»

Вострокнутова Е.В.

приложение а

(обязательное)

Процедура приготовления контрольных растворов

А.1 Процедура приготовления контрольных растворов из ГСО 10066-2012 для проверки абсолютной погрешности измерений массовой доли элементов в растворенном виде и диапазона измерений элементов в растворенном виде

Для проверки абсолютной погрешности измерений массовой доли элементов в растворенном виде и диапазона измерений элементов в растворенном виде готовят из ГСО 10066-2012 контрольный раствор СМН-10 с действительным значением массовой доли элементов (Сu, Fe, Mg) 10 млн⁻¹. Для этого устанавливают колбу коническую вместимостью 100 см³ на весы II (высокого) класса точности, обнуляют весы и приливают 5 г ГСО 10066-2012 и 45 г масла.

Колбу с контрольным раствором СМН-10 помещают в ультразвуковую ванну и обрабатывают в течение 1 часа.

Далее из контрольного раствора СМН-10 готовят контрольные растворы СМН-0,5, СМН-1, СМН-3. В таблице А.1 приведена процедура приготовления контрольных растворов СМН.

Действительное значение массовой доли k-го элемента в i-ом контрольном растворе $(A_{nki}, \mathsf{млн}^{-1})$ рассчитывают по формуле

$$A_{\mu ki} = \frac{m_{1i} \cdot A_{xki}}{m_{1i} + m_{2i}},\tag{A.1}$$

где A_{xki} - значение массовой доли k-го элемента в i-ом исходном контрольном растворе, млн $^{-1}$;

 m_{1i} - масса *i*-го исходного контрольного раствора, г;

 m_{2i} - масса i-ой навески масла, г.

Границы абсолютной погрешности приготовления i-го контрольного раствора для k-го элемента рассчитывают по формуле

$$\Delta_{A_{nki}} = \pm 1,1 \cdot \sqrt{\left(\frac{A_{xki}}{m}\right)^2 \cdot \Delta_m^2 + \left(-\frac{m_{1i} \cdot A_{xki}}{\left(m_i\right)^2}\right)^2 \cdot \Delta_m^2 + \left(\frac{m_{1i}}{m_i}\right)^2 \cdot \Delta_{A_{xki}}^2},$$
(A.2)

где A_{xki} - значение массовой доли k-го элемента в i-ом исходном контрольном растворе, млн $^{-1}$;

 m_{1i} - масса i-го исходного контрольного раствора, г;

 $m_i = m_{1i} + m_{2i}, \Gamma;$

 Δ_m - абсолютная погрешность весов II (высокого) класса точности, г;

 $\Delta_{A_{xki}}$ - абсолютная погрешность приготовления *i*-го исходного раствора для *k*-го элемента, (для расчета границ абсолютной погрешности приготовления СМН-10 $\Delta_{A_{xki}}$ - абсолютная погрешность аттестованного значения ГСО 10066-2012 для *k*-го элемента), млн⁻¹.

Перед применением контрольных растворов СМН-0,5, СМН-1, СМН-3 их помещают в ультразвуковую ванну и обрабатывают в течение 30 мин.

Приготовленные контрольные растворы СМН хранят в герметично закрытых пластиковых бутылках вдали от источников вибрации и магнитных полей. Каждый раз перед использованием контрольные растворы СМН встряхивают в бутылке в течение 5 мин и обрабатывают 30 мин в ультразвуковой ванне для устранения расслаивания, возникающего при хранении. Срок хранения контрольных растворов СМН не более 30 дней.

Таблица А.1 – Процедура приготовления контрольных растворов СМН

Наименование контрольного раствора	Наименование исходного контрольного раствора / масса исходного контрольного раствора, г	Масса масла, г	Действительное значение массовой доли элементов*, млн ⁻¹	Границы абсолютной погрешности приготовления контрольного раствора*, млн-1
			Cu Fe Mg	Cu Fe Mg
CMH-10	ГСО 10066-2012 / 5	45	10,0	0,49
CMH-0,5	CMH-10 / 2,5	47,5	0,5	0,03
CMH-1	CMH-10 / 5	45	1,0	0,06
CMH-3	CMH-10 / 15	35	3,0	0,16

^{*}в таблице А.1 приведены действительные значения массовой доли элементов и границы абсолютных погрешностей приготовления контрольных растворов, если для приготовления используется ГСО 10066-2012 со следующими аттестованными значениями массовой доли элементов: A (Cu) = 100 млн⁻¹, δ (Cu) = ± 4 %; A (Fe) = ± 100 млн⁻¹, δ (Mg) = ± 4 %.

А.2 Процедура приготовления контрольных растворов из ГСО 10696-2015 для проверки абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах и диапазона измерений элементов в растворенном виде и твердых частицах

Для проверки абсолютной погрешности измерений массовой доли элементов в растворенном виде и твердых частицах и диапазона измерений элементов в растворенном виде и твердых частицах готовят из ГСО 10696-2015 контрольный раствор МОС-10. Для этого берут навеску ГСО 10696-2015 0,3230 г на весах I (специального) класса точности и помещают в коническую колбу вместимостью 1000 см³.

Далее колбу с навеской устанавливают на весы II (высокого) класса точности, обнуляют весы и приливают 400 г масла. Затем колбу помещают в ультразвуковую ванну и обрабатывают в течение 1 часа. Полученный раствор разбавляют маслом в 2,5 раза (приливают 600 г масла) и еще раз помещают в ультразвуковую ванну и обрабатывают в течение 30 мин.

Действительное значение массовой доли элементов в контрольном растворе MOC-10 (A_{10} , млн⁻¹) рассчитывают по формуле

$$A_{10} = \frac{m_1 \cdot A_0}{m_1 + m_2} \cdot \frac{1}{2.5} \cdot 10^4, \tag{A.3}$$

где A_0 - аттестованное значение массовой доли элемента в ГСО 10696-2015, %;

 m_1 - масса ГСО 10696-2015, г;

 m_2 - масса масла, Γ ;

k - коэффициент разбавления.

Границы абсолютной погрешности приготовления контрольного раствора MOC-10 рассчитывают по формуле

$$\Delta_{A_{10}} = \pm \left(1.1 \cdot \sqrt{\left(\frac{A_0}{m}\right)^2 \cdot \Delta_{m_1}^2 + \left(-\frac{m_1 \cdot A_0}{(m)^2}\right)^2 \cdot \Delta_m^2 + \left(\frac{m_1}{m}\right)^2 \cdot \Delta_{A_0}^2} \right) \cdot 10^4, \tag{A.4}$$

где A_0 - значение массовой доли элемента в исходном контрольном растворе, %;

 m_1 - масса ГСО 10696-2015, г;

 $m = m_1 + m_2, \Gamma;$

 Δ_{m_1} - абсолютная погрешность весов I (специального) класса точности, г;

 Δ_m - абсолютная погрешность весов II (высокого) класса точности, г;

 Δ_{A_0} - абсолютная погрешность аттестованного значения элемента в ГСО 10066-2012, %.

Действительное значение массовой доля элемента в приготовленном контрольном растворе MOC-10, рассчитанное по формуле (A.3) и границы абсолютной погрешности

приготовления контрольного раствора МОС-10, рассчитанные по формуле (А.4) приведены в таблице А.2.

Таблица А.2 - Действительное значение массовой элемента в приготовленном контрольном растворе МОС-10 и границы абсолютной погрешности приготовления контрольного раствора МОС-10*

Элемент	Cu	Fe	Mg
Действительное значение массовой доли*, млн ⁻¹	10,17	20,15	4,10
Границы абсолютной погрешности приготовления контрольного раствора*, млн-1	0,40	0,58	0,33

*если для приготовления МОС-10 используется ГСО 10696-2015 со следующими аттестованными значениями массовой доли элементов: A_0 (Cu) = 3,15 %, δ (Cu) = ±3,2 %; A_0 (Fe) = 6,24 %, δ (Fe) = ±2,1 %; A_0 (Mg) = 1,27 %, δ (Mg) = ±6,9 %. При использовании ГСО 10695-2015 с другим аттестованными значениями массовых долей элементов процедура приготовления должна быть скорректирована.

Далее из контрольного раствора МОС-10 готовят контрольные растворы МОС-3, МОС-2, МОС-1, МОС-03 последовательным разбавлением. Для этого устанавливают коническую колбу вместимостью 500 см³ на весы II (высокого) класса точности, обнуляют весы и приливают исходный контрольный раствор и чистое масло. В таблице А.3 приведена процедура приготовления контрольных растворов МОС-3, МОС-2, МОС-1, МОС-03.

Таблица А.3 - Процедура приготовления контрольных растворов МОС-3, МОС-2, МОС-1,

МОС-03 последовательным разбавлением

Наименование контрольного раствора	Наименование исходного контрольного раствора / масса исходного контрольного раствора, г	Масса масла, г	
MOC-3	MOC-10 / 120	280	
MOC-2	MOC-10 / 80	320	
MOC-1	MOC-3 / 133,3	266,7	
MOC-03	MOC-1 / 120	280	

Действительное значение массовой доли k-го элемента в i-ом контрольном растворе (МОС-3, МОС-2, МОС-1, МОС-03) (A_{nki} , млн⁻¹) рассчитывают по формуле

$$A_{\mu ki} = \frac{m_{1i} \cdot A_{xki}}{m_{1i} + m_{2i}},\tag{A.5}$$

где A_{xki} - значение массовой доли k-го элемента в i-ом исходном контрольном растворе, млн $^{-1}$;

 m_{1i} - масса *i*-го исходного контрольного раствора, г;

 m_{2i} - масса i-ой навески масла, Γ .

Границы абсолютной погрешности приготовления i-го контрольного раствора для k-го элемента рассчитывают по формуле

$$\Delta_{A_{nki}} = \pm 1.1 \cdot \sqrt{\left(\frac{A_{xki}}{m_i}\right)^2 \cdot \Delta_m^2 + \left(-\frac{m_{1i}}{(m_i)^2}\right)^2 \cdot \Delta_m^2 + \left(\frac{m_{1i}}{m_i}\right)^2 \cdot \Delta_{A_{xki}}^2}, \tag{A.6}$$

где A_{xki} - значение массовой доли k-го элемента в i-ом исходном контрольном растворе, млн $^{-1}$;

 m_{1i} - масса i-го исходного контрольного раствора, г;

 $m_i = m_{1i} + m_{2i}, \Gamma;$

 Δ_m - абсолютная погрешность весов II (высокого) класса точности, г;

 $\Delta_{A_{xki}}$ - абсолютная погрешность приготовления *i*-го исходного раствора для *k*-го элемента, млн⁻¹.

В таблице А.4 приведено действительное значение массовой доли k-го элементов в i-ом приготовленном контрольном растворе, рассчитанное по формуле (А.5) и границы абсолютной погрешности приготовления i-го контрольного раствора для k-го элемента, рассчитанные по формуле (А.6).

Таблица A.4 — Действительное значение массовой доли k-го элемента в i-ом контрольном растворе и границы абсолютной погрешности приготовления i-го контрольного раствора для k-го элемента

Наименование контрольного раствора	Действительное значение массовой доли элемента*, млн ⁻¹			Границы абсолютной погрешности приготовления контрольного раствора*, млн ⁻¹		
	Cu	Fe	Mg	Cu	Fe	Mg
MOC-3	3,05	6,04	1,23	0,13	0,19	0,11
MOC-2	2,03	4,03	0,82	0,09	0,13	0,07
MOC-1	1,02	2,01	0,41	0,05	0,07	0,04
MOC-03	0,31	0,60	0,12	0,02	0,02	0,01

^{*}если для приготовления MOC-3, MOC-2, MOC-1, MOC-03 из контрольного раствора MOC-10 используется Γ CO 10696-2015 со следующими аттестованными значениями массовой доли элементов: A_0 (Cu) = 3,15 %, δ (Cu) = \pm 3,2 %; A_0 (Fe) = 6,24 %, δ (Fe) = \pm 2,1 %; A_0 (Mg) = 1,27 %, δ (Mg) = \pm 6,9 %.

Перед применением контрольных растворов МОС их помещают в ультразвуковую ванну и обрабатывают в течение 30 мин.

Приготовленные контрольные растворы МОС хранят в герметично закрытых пластиковых бутылках вдали от источников вибрации и магнитных полей. Каждый раз перед использованием контрольные растворы МОС в бутылке встряхивают в течение 5 мин и обрабатывают 30 мин в ультразвуковой ванне для устранения расслаивания, возникающего при хранении. Срок хранения контрольных растворов МОС не более 30 дней.

приложение Б

(рекомендуемое)

Проверка результатов измерений массовых долей элементов в контрольных растворах, полученных в условиях повторяемости на наличие выбросов по критерию Граббса

Для результатов измерений массовой доли k-го элемента в i-ом контрольном растворе $\{\omega_{kij}, j=1, ..., 5\}$ находят максимальное $\omega_{kij(max)}$ и минимальное $\omega_{kij(min)}$ значения.

Рассчитывают среднее арифметическое значение результатов измерений массовой доли k-го элемента в i-ом контрольном растворе ($\overline{\omega}_{ki}$, млн⁻¹), полученных в условиях внутрилабораторной прецизионности и среднее квадратическое отклонение (СКО) результатов измерений массовой доли k-го элемента в i-ом контрольном растворе ($S_{\omega_{ki}}$, млн⁻¹) по формулам:

$$\overline{\omega}_{ki} = \frac{\sum_{j=1}^{n} \omega_{kij}}{n}, S_{\omega_{ki}} = \sqrt{\frac{\sum_{j=1}^{n} (\omega_{kij} - \overline{\omega}_{ki})^2}{n-1}}.$$
(E.1)

Рассчитывают статистики Граббса по формулам:

$$GR_{(max)} = \frac{\omega_{kij(max)} - \overline{\omega}_{ki}}{S_{\omega_{ki}}}, GR_{(min)} = \frac{\overline{\omega}_{ki} - \omega_{kij(min)}}{S_{\omega_{ki}}}.$$
 (5.2)

Сравнивают $GR_{(max)}$ и $GR_{(min)}$ с критическим значением $GR_{(табл)}$ = 1,715 для числа степеней свободы f=L=5, соответствующего числу серий результатов анализа, и принятой доверительной вероятности P=0,95 (таблица И.2. РМГ 61-2010).

Если $GR_{(max)} > GR_{(табл)}$ и (или) $GR_{(min)} > GR_{(табл)}$, то результаты $\omega_{kij(max)}$ и (или) $\omega_{kij(min)}$ исключают.

Проводят еще измерения массовой доли k-го элемента в i-ом контрольном растворе (чтобы в сумме было пять измерений).

Проводят расчеты по формулам (Б.1) и (Б.2).