УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «24» октября 2022 г. № 2665

Регистрационный № 87170-22

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы хроматографические Dräger X-pid 9500

Назначение средства измерений

Газоанализаторы хроматографические Dräger X-ріd 9500 (далее - газоанализаторы) предназначены для измерений объемной доли и массовой концентрации вредных веществ в воздухе рабочей зоны и обнаружения утечек из технологического оборудования.

Описание средства измерений

Принцип действия газоанализаторов — фотоионизационный. Молекулы измеряемых веществ ионизируются фотонами с высокой энергией с помощью газоразрядной лампы. Высвободившиеся электроны и ионы собираются на электродах, на которые подано напряжение. Ток ионизации пропорционален содержанию в воздухе молекул определяемых компонентов и конвертируется в электрический сигнал.

Газоанализаторы функционируют в двух режимах: режим «Поиск» и режим «Анализ».

В режиме «Поиск» осуществляется непрерывный контроль суммарного содержания летучих органических соединений (ЛОС) без учета специфической реакции веществ.

В режиме «Анализ» газоанализаторы осуществляют циклическое селективное измерение содержания предварительно выбранных определяемых компонентов в воздухе рабочей зоны и зонах возможного появления взрывоопасных веществ. Принцип работы газоанализаторов в режиме «Анализ» основан на разделении компонентов пробы при ее прохождении в потоке газа-носителя (внешний воздух, прошедший через пылевлагозащитный фильтр) через хроматографическую колонку и регистрации с помощью фотоионизационного датчика аналитического сигнала от компонента.

Газоанализаторы представляют собой автоматические переносные индивидуальные приборы непрерывного действия в режиме «Поиск» и циклического действия в режиме «Анализ». При анализе нескольких определяемых компонентов, компонент с наибольшим временем удерживания определяет время цикла анализа (время от подачи пробы до выхода вещества из хроматографической колонки).

Конструктивно газоанализаторы состоят из блока датчиков и блока управления на базе смартфона, выполненных во взрывозащищенном исполнении. Электронные элементы измерительной системы и фотоионизационные датчики расположены в блоке датчиков, из которого необработанные результаты измерения передаются на блок управления (смартфон) через Bluetooth, где обрабатываются и отображаются на дисплее блока управления с помощью мобильного приложения. Возможна дальнейшая пересылка данных о результатах измерений с блока управления на центральный диспетчерский пост через мобильную сеть или Wi-Fi.

Блок датчиков газоанализаторов имеет неразборный корпус из антистатической пластмассы. Внутри корпуса расположены батарейный блок, электронные элементы измерительной системы, два насоса и два фотоионизационных датчика. На корпусе имеются кнопка включения, два входных и одно выходное отверстие для отбора проб, устройства крепления для плечевого ремня, пылевлагозащитный фильтр, разъем зарядного устройства.

Способ подачи анализируемого газа – принудительный, с использованием встроенного насоса блока датчиков.

Ограничение доступа к внутренним частям обеспечивается применением особой конструкции корпуса, не позволяющей вскрытие без применение специального инструмента.

Заводской (серийный) номер наносится на маркировочную табличку блока датчиков печатным способом в виде буквенно-цифрового кода.

Нанесение знака поверки на газоанализаторы не предусмотрено.

Общий вид газоанализаторов представлен на рисунке 1, общий вид маркировочной таблички – на рисунке 2.

Рисунок 1 – Общий вид газоанализаторов

Рисунок 2 — Общий вид маркировочной таблички с указанием мест нанесения знака утверждения типа и заводского номера

Программное обеспечение

Газоанализаторы имеют программное обеспечение (ПО) блока датчиков и ПО блока управления (мобильное приложение для смартфонов на основе Android). ПО блока управления устанавливается и обновляется через сеть Интернет с защищенного портала изготовителя. При установке ПО блока управления на смартфон выполняются только функции, предусмотренные данным мобильным приложением, остальные функции свернуты.

ПО осуществляют следующие функции:

- световую индикацию состояния блока датчиков;
- обеспечение связи между блоком датчиков и блоком управления;
- управление газоанализатором через пользовательский интерфейс мобильного приложения;
 - выбор режима измерений, выбор программ анализа для режима «Анализ»;
- автоматические подсказки и инструкции по пошаговому выполнению функциональной проверки, калибровки;
- хранение и отображение результатов измерений, результатов функциональных проверок, калибровок, а также параметров, относящихся к этим данным;
- индикация суммарного содержания ЛОС в режиме «Поиск», измерение и отображение результатов измерений в режиме «Анализ»;
 - контроль внутренних параметров газоанализатора.

Влияние ПО учтено при нормировании метрологических характеристик газоанализаторов.

Газоанализаторы имеют защиту ПО от преднамеренных или непреднамеренных изменений. Уровень защиты — «средний» по Р 50.2.077-2014.

Идентификационные данные ПО газоанализаторов приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Инаукифункация из науки (призуки)	Значение		
Идентификационные данные (признаки)	ПО блока датчиков	ПО блока управления	
Идентификационное наименование ПО	Firmware	Dräger X-pid x500	
Номер версии (идентификационный номер) ПО, не ниже	2.1.14	1.5.0	
Цифровой идентификатор ПО	-	-	
Алгоритм вычисления цифрового идентификатора ПО	-	-	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики газоанализаторов в режиме «Анализ»

	гические характери	стики газоанализат			5 <i>//</i>
	Диапазон измерений		Пределы		
Определяемый			допускаемой		
компонент	Anamasan	nome permin	основной		Назначение
(измерительный			погрец	Іности	2)
канал)	объемной доли,	массовой	приведен	относи-	
Kanan)	млн ⁻¹	концентрации ¹⁾ ,	-ной ³⁾ ,	тельной,	
	MJIH	$M\Gamma/M^3$	γ, %	δ, %	
1,3 бутадиен С ₄ Н ₆	от 0 до 25	от 0 до 56	±15	-	В
	от 0 до 4,6	от 0 до 15	±15	-	
Бензол С ₆ Н ₆	включ.	включ.			К
	св. 4,6 до 25	св. 15 до 81	-	±15	
Ацетон С ₃ Н ₆ О	от 0 до 50	от 0 до 121	±15	-	В
	от 0 до 34	от 0 до 150	+15		
Этилбензол С ₈ Н ₁₀	включ.	включ.	±15	- 15	К
	св. 34 до 300	св. 150 до 1323	-	±15	
Этиленоксид	от 0 до 50 включ.	от 0 до 92 включ.	±15	-	A
C ₂ H ₄ O	св. 50 до 100	св. 92 до 183	-	±15	A
	от 0 до 50	от 0 до 179	. 1.5		
н-гексан С ₆ Н ₁₄	включ.	включ.	±15	- 1.5	A
	св. 50 до 100	св. 179 до 358	-	±15	
	от 0 до 43	от 0 до 100	. 1.5		
Изобутилен С4Н8	включ.	включ.	±15	- 1.5	К
, , ,	св. 43 до 100	св. 100 до 233	-	±15	
ъ 1 DII	от 0 до 50 включ.	от 0 до 71 включ.	±15	-	
Фосфин РН3	св. 50 до 100	св. 71 до 141	-	±15	A
	от 0 до 35	от 0 до 150	±15		
Стирол С ₈ Н ₈	включ.	включ.	±13	- 15	К
_	св. 35 до 300	св. 150 до 1299	_	±15	
Тотпом пополницац	от 0 до 50	от 0 до 341	±15		
Тетрахлорэтилен	включ.	включ.	±13	±15	A
C ₂ Cl ₄	св. 50 до 150	св. 341 до 1023	_	±13	
T 1	от 0 до 33	от 0 до 100	. 1.7		
Тетрагидрофуран	включ.	включ.	±15	- 1.7	К
C ₄ H ₈ O	св. 33 до 200	св. 100 до 600	-	±15	
	от 0 до 39	от 0 до 150			
Толуол С7Н8	включ.	включ.	±15	-	К
	св. 39 до 100	св. 150 до 383	-	±15	
_	от 0 до 5,5	от 0 до 30			
Трихлорэтилен	включ.	включ.	±15	-	К
C ₂ HCl ₃	св. 5,5 до 100	св. 30 до 541	-	±15	
_	от 0 до 50	от 0 до 129			
Винилхлорид	включ.	включ.	±15	-	A
C ₂ H ₃ Cl	св. 50 до 100	св. 129 до 258	-	±15	
	от 0 до 34	от 0 до 150	±15	-	
м-ксилол С ₈ Н ₁₀	включ.	включ.			К
101110	св. 34 до 300	св. 150 до 1323	_	±15	
	A		<u> </u>		

Определяемый компонент (измерительный	Диапазон измерений		Пределы допускаемой основной погрешности		Назначение
канал)	объемной доли, млн ⁻¹	массовой концентрации $^{1)}$, мг/м 3	приведен -ной ³⁾ , γ, %	относи- тельной, δ, %	
о-ксилол С ₈ Н ₁₀	от 0 до 34 включ. св. 34 до 300	от 0 до 150 включ. св. 150 до 1323	±15	±15	К
п-ксилол С ₈ Н ₁₀	от 0 до 34 включ. св. 34 до 300	от 0 до 150 включ. св. 150 до 1323	±15	±15	К
Бутилацетат С ₆ H ₁₂ O ₂	от 0 до 41 включ. св. 41 до 220	от 0 до 200 включ. св. 200 до 1063	±15	- ±15	К
Сероуглерод CS ₂	от 0 до 3,2 включ. св 3,2 до 110	от 0 до 10 включ. св 10 до 348	±15	- ±15	К
Циклогексан С ₆ H ₁₂	от 0 до 23 включ. св. 23 до 200	от 0 до 80 включ. св. 80 до 698	±15 -	- ±15	К
Гептан С ₇ Н ₁₆	от 0 до 100 включ. св. 100 до 500	от 0 до 416 включ. св. 416 до 2080	±15	±15	A
Изопропанол i-C ₃ H ₇ OH	от 0 до 100 включ. св. 100 до 200	от 0 до 250 включ. св. 250 до 500	±15	±15	A
Этанол C ₂ H ₅ OH	от 0 до 150 включ. св. 150 до 500	от 0 до 287 включ. св. 287 до 960	±15 -	±15	В
Сероводород H ₂ S	от 0 до 7,0 включ. св. 7,0 до 55	от 0 до 10 включ. св. 10 до 78	±15 -	±15	К
Пропанол С ₃ H ₇ OH	от 0 до 300 включ. св. 300 до 550	от 0 до 750 включ. св. 750 до 1375	±15	±15	A
Винилацетат С ₄ H ₆ O ₂	от 0 до 8,0 включ. св. 8,0 до 55	от 0 до 30 включ. св. 30 до 197	±15 -	- ±15	К

Определяемый компонент	Диапазон измерений		Пред допуск осно погрец	аемой вной	Назначение
(измерительный канал)	объемной доли, млн ⁻¹	массовой концентрации $^{1)}$, $_{\rm M\Gamma/M}^{3}$	приведен -ной ³⁾ , у, %	относи- тельной, δ, %	ŕ

 $[\]overline{\ }^{1)}$ Пересчет значений объемной доли X в млн⁻¹ в массовую концентрацию C, мг/м³, проводят по формуле: C = X M/V_m, где

- 4) Нормальные условия измерений:
 - температура окружающего воздуха от плюс 15 до плюс 25 °C;
 - относительная влажность окружающего воздуха не более 80 %;
 - диапазон атмосферного давления от 98 до 104,6 кПа.

Таблица 3 – Прочие метрологические характеристики газоанализаторов

Наименование характеристики	Значение
Предел допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности	0,3
Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей среды в пределах рабочих условий эксплуатации относительно условий определения основной погрешности, в долях от предела допускаемой основной погрешности	±0,4
Пределы допускаемой дополнительной погрешности от влияния неизмеряемых компонентов с содержанием не более 0,5 ПДК и от взаимного влияния друг на друга определяемых компонентов в анализируемой газовой смеси, в долях от пределов допускаемой основной погрешности	±0,2
Пределы допускаемой дополнительной погрешности от влияния изменения относительной влажности окружающей среды в пределах рабочих условий эксплуатации относительно условий определения основной погрешности, в долях от предела допускаемой основной погрешности	±0,2
Время прогрева, мин, не более	20
Время цикла анализа, с, не более	150

M - молярная масса компонента, г/моль, V_m - молярный объем равный 24,04 дм 3 /моль.

²⁾ В графе «Назначение» указаны: К - контроль ПДК воздуха рабочей зоны; А - контроль при аварийных ситуациях; В - определение компонента в воздухе рабочей зоны.

³⁾ Нормирующее значение — верхний предел диапазона измерений объемной доли (массовой концентрации) в котором нормированы пределы приведенной погрешности.

Постановлением Правительства Российской Федерации № 1847 от 16.11.2020 г. п. 4.43

Постановлением Правительства Российской Федерации № 1847 от 16.11.2020 г. п. 4.43				
Определяемый компонент	Диапазон	Пределы допускаемой погрешности ²⁾		
компонент (ПДК ⁴⁾ , мг/м ³)	объемной доли, млн ⁻¹	массовой концентрации, 1) мг/м ³	приведен- ной ³⁾ , у, %	относи- тельной, δ, %
Бензол C ₆ H ₆	от 3,5 до 4,6 включ.	от 12 до 15 включ.	±27	-
(15/5)	св. 4,6 до 25	св. 15 до 81	-	±27
Этилбензол C ₈ H ₁₀ (150/50)	от 26 до 34 включ. св. 34 до 300	от 116 до 150 включ. св. 150 до 1323	±27	- ±27
			127	
Изобутилен С ₄ Н ₈ (100/-)	от 33 до 43 включ. св. 43 до 100	от 77 до 100 включ. св. 100 до 233	±27	- ±27
Стирол C ₈ H ₈	от 27 до 35 включ.	от 116 до 150 включ.	±27	
(150/50)	св. 35 до 300	св. 150 до 1299	±27	±27
	св. 33 до 300	св. 130 до 1299	_	121
Тетрагидрофуран	от 26 до 33 включ.	от 77 до 100 включ.	±27	-
C ₄ H ₈ O (100/-)	св. 33 до 200	св. 100 до 600	-	±27
` ,	20 20	116 150	. 27	
Толуол C ₇ H ₈	от 30 до 39 включ.	от 116 до 150 включ.	±27	-
(150/50)	св. 39 до 100	св. 150 до 383	-	±27
Трихлорэтилен	от 4,2 до 5,5 включ.	от 23 до 30 включ.	±27	_
C_2HCl_3	св. 5,5 до 100	св. 30 до 541	,	±27
(30/10)	,			,
м-ксилол С ₈ Н ₁₀	от 26 до 34 включ.	от 116 до 150 включ.	±27	-
(150/50)	св. 34 до 300	св. 150 до 1323	-	±27
о-ксилол C ₈ H ₁₀	от 26 до 34 включ.	от 116 до 150 включ.	±27	-
(150/50)	св. 34 до 300	св. 150 до 1323	-	±27
п-ксилол C_8H_{10}	от 26 до 34 включ.	от 116 до 150 включ.	±27	-
(150/50)	св. 34 до 300	св. 150 до 1323	-	±27
Бутилацетат	от 32 до 41 включ.	от 154 до 200 включ.	±27	_
$C_6H_{12}O_2$	св. 41 до 220	св. 200 до 1063		±27
(200/50)		св. 200 до 1003		127
Сероуглерод CS ₂	от 2,5 до 3,2 включ.	от 7,7 до 10 включ.	±27	-
(10/3)	св 3,2 до 110	св 10 до 348	-	±27
Циклогексан	от 18 до 23 включ.	от 62 до 80 включ.	±27	_
C_6H_{12}	св. 23 до 200	св. 80 до 698		±27
(80/-)	СВ. 23 ДО 200	св. 80 до 078	_	±21
Сероводород	от 5,4 до 7,0 включ.	от 7,7 до 10 включ.	±27	_
H_2S	св. 7,0 до 55	св. 10 до 78		±27
(10/-)	сь. 7,0 до ээ	св. 10 до 76	_	<i>⊥∠1</i>
Винилацетат	от 6,2 до 8,0 включ.	от 23 до 30 включ.	±27	_
$C_4H_6O_2$	св. 8,0 до 55	св. 30 до 197	/	±27
(30/10)	ов. 0,0 до ээ	ов. 50 до 177	_	1

 $[\]overline{^{(1)}}$ Пересчет значений объемной доли X в млн⁻¹ в массовую концентрацию C, мг/м³, проводят по формуле: C = X M/V_m, где

M - молярная масса компонента, г/моль, V_m - молярный объем равный 24,04 дм 3 /моль.

Определяемый	Диапазон измерений		Пределы допускаемой погрешности ²⁾	
компонент (ПДК ⁴⁾ , мг/м ³)	объемной доли, млн ⁻¹	массовой концентрации, 1) мг/м ³	приведен- ной ³⁾ , γ, %	относи- тельной, δ, %

- ²⁾ Пределы допускаемой погрешности газоанализаторов в условиях эксплуатации приведены для режима «Анализ» для заранее выбранных определяемых компонентов и рассчитаны с учетом пределов допускаемой основной погрешности (Таблица 2) и пределов дополнительных погрешностей (Таблица 3).
- 3) Нормирующее значение верхний предел диапазона измерений объемной доли (массовой концентрации) в котором нормированы пределы приведенной погрешности.
- ⁴⁾ В числителе стоит значение максимально разовой предельно допустимой концентрации (ПДК м.р.), а в знаменателе среднесменной предельно допустимой концентрации (ПДК с.с) в соответствии с СанПиН 1.2.3685-21.

Таблица 5 – Основные технические характеристики газоанализаторов

таолица 5 – Основные технические характеристики газоанализаторов				
Наименование характеристики	Значение			
Диапазон показаний ¹⁾ объемной доли ЛОС в режиме «Поиск», млн ⁻¹	от 0 до 60			
Параметры электропитания блока датчиков:				
- напряжение постоянного тока батареи питания, В, не более	3,65			
- электрическая емкость батареи питания, А ч, не более	5,6			
Габаритные размеры блока датчиков, мм, не более:				
- ширина	132			
- высота	281			
- глубина	56			
Габаритные размеры блока управления, мм, не более:				
- ширина	85			
- высота	165			
- глубина	30			
Масса, кг, не более:				
- блока датчиков	0,9			
- блока управления	0,4			
Степень защиты $^{2)}$:				
- блок датчиков	IP 54			
- блок управления	IP 64			
Условия эксплуатации:				
- диапазон температуры окружающей среды, °C	от -10 до +30			
- относительная влажность окружающей среды, %	от 10 до 90			
- диапазон атмосферного давления, кПа	от 84,0 до 106,7			
Маркировка взрывозащиты ³⁾ :				
- блок датчиков	0Ex ia IIC T4 Ga X			
- блок управления	1Ex ib op is IIC T4 Gb X			
Средняя наработка до отказа, ч (при доверительной вероятности	15 000			
P=0,95)	13 000			
Срок службы, лет, не менее	6			

 $[\]overline{\ \ \ }^{1)}$ Показания содержания объемной доли ЛОС в режиме «Поиск» являются индикаторными.

²⁾ Πο ΓΟCT 14254-2015 (IEC 60529:2013).

³⁾ Πο ΓΟCT 31610.0-2014 (IEC 60079-0:2011).

Знак утверждения типа наносится

печатным способом на маркировочную табличку блока датчиков и титульный лист Руководства по эксплуатации.

Комплектность средства измерений

Таблица 6 – Комплектность газоанализаторов

Наименование	Обозначение	Количество
Газоанализатор хроматографический Dräger X-pid	Dräger X-pid 9500	1 шт.
9500 в составе:		
- блок датчиков		
- блок управления		
Комплект принадлежностей:		1 шт.
- зарядное устройство	68 50 018	
- плечевой ремень для ношения блока датчиков	68 51 846	
- калибровочный адаптер	68 51 850	
Кейс для переноски и хранения	68 51 851	по запросу
Баллон с калибровочной газовой смесью	68 14 046	по запросу
Руководство по эксплуатации	90 33 849	1 экз.
Паспорт	-	1 экз.

Сведения о методиках (методах) измерений

приведены в главе 3 «Инструкция по эксплуатации» Руководства по эксплуатации.

Нормативные и технические документы, устанавливающие требования к средству измерений

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений»;

Приказ Росстандарта от 31 декабря 2020 г. № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия;

Техническая документация фирмы «Dräger MSI GmbH», Германия.

Правообладатель

Фирма «Dräger MSI GmbH», Германия

Адрес: Rohstrasse 32, 58093, Hagen, Germany

Телефон: +49 451 882-0 Факс: +49 451 882-2080 Web-сайт: www.draeger.com E-mail: info@draeger.com

Изготовитель

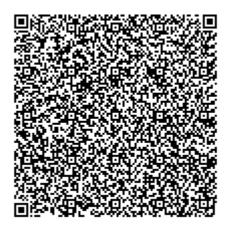
Фирма «Dräger MSI GmbH», Германия

Адрес: Rohstrasse 32, 58093, Hagen, Germany

Телефон: +49 451 882-0 Факс: +49 451 882-2080 Web-сайт: www.draeger.com E-mail: info@draeger.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ им. Д.И.Менделеева»)


ИНН 7809022120

Адрес:190005, г. Санкт-Петербург, Московский пр., д.19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web сайт: www.vniim.ru E-mail: info@vniim.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311541.

