

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.C.31.999.A № 73858

Срок действия до 08 февраля 2024 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Солемеры измерительно-сигнализирующие "ИСС1"

ИЗГОТОВИТЕЛЬ

Закрытое акционерное общество "Аналитприбор-Мек" (ЗАО "Аналитприбор-Мек"), Республика Армения

РЕГИСТРАЦИОННЫЙ № 75003-19

ДОКУМЕНТ НА ПОВЕРКУ АЖУ2.840.019 МИ

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **08 мая 2019 г.** № **1067**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		А.В.Кулешон
Федерального агентства		
	"	 2019 г.

№ 035975

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Солемеры измерительно-сигнализирующие «ИСС1»

Назначение средства измерений

Солемеры измерительно-сигнализирующие «ИСС1» (далее - солемеры) предназначены для непрерывного измерения и выдачи сигнала превышения (падение ниже) заданного значения удельного электрического сопротивления водного раствора хлорида натрия.

Описание средства измерений

Работа солемера основана на кондуктометрическом методе анализа. Принцип действия солемера состоит в измерении удельной электрической проводимости водных растворов солей, функционально связанных с их концентрацией (солесодержанием). Удельная электрическая проводимость анализируемого раствора в измерительной ячейке датчика преобразуется в электрическое сопротивление ее чувствительного элемента. С помощью измерительносигнализирующего преобразователя БИС2 сопротивление чувствительного элемента датчика преобразуется в унифицированный сигнал постоянного тока, который подается на вход вольтметра М1611.2, проградуированного в единицах удельного электрического сопротивления (УЭС, Ом·м).

Конструктивно солемер состоит из датчика солености водных растворов проточного типа (ДСВ 20 – ДСВ 23), преобразователя измерительно-сигнализирующего БИС2 (далее – преобразователь) и вольтметра М1611.2.

Датчики ДСВ 20 – ДСВ 23 представляют собой металлический цилиндрический корпус, в котором расположен чувствительный элемент (измерительная ячейка).

Датчики отличаются друг от друга конструкцией и размерами измерительной ячейки.

Корпусы датчиков ДСВ 20 и ДСВ 21 выполнены из стали 08X18H10T, а ДСВ 22 и ДСВ 23 – из сплава ЗМ и имеют два штуцера: нижний – для входа воды, верхний – для выхода.

Преобразователь БИС2 выполнен в виде отдельно собранного шасси, на котором закреплены все функциональные узлы преобразователя. Шасси помещен в водозащищенный корпус с сальниками для ввода кабелей.

Крышка преобразователя крепится к корпусу с помощью барашковых гаек.

Корпус и крышка преобразователя являются литыми из алюминиевого сплава.

Конструктивное исполнение вольтметра М1611.2 щитовое, ударопрочное, вибропрочное, виброустойчивое с подвижной частью на кернах с круговой шкалой.

Солемеры соответствуют требованиям ГОСТ Р 51350-99 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования».

Общий вид солемера приведен на рисунке 1.

Рисунок 1 - Общий вид солемера измерительно-сигнализирующего «ИСС1»

Программное обеспечение

отсутствует.

Метрологические и технические характеристики

Диапазоны измерений солемеров в зависимости от используемого типа датчика ДСВ приведены в таблице 1. Остальные метрологические и технические характеристики – в таблице 2, масса и габаритные размеры элементов солемера – в таблице 3.

Таблица 1

<u> </u>			
			Диапазон установления
Тип датчика	Значение постоянной	Диапазон измерений	порогов срабатывания
ДСВ	датчика, (К, м ⁻¹)	УЭС (ρ, Ом∙м)	сигнализации УЭС
			(ρ, Ом⋅м)
20	0,2	от 2500 до 4500	от 3000 до 4000
21	2	от 250 до 2500	от 300 до 2000
21	2	от 1250 до 4500	от 1500 до 4000
22	20	от 100 до 1250	от 200 до 1000
23	200	от 2,5 до 25	от 3 до 20

Таблица 2

Наименование характеристики	Значение
Пределы допускаемой основной приведенной погрешности измерений удельного	
электрического сопротивления, % от верхнего предела диапазона измерений	±6

Продолжение таблицы 2

Наименование характеристики	Значение
Пределы допускаемой дополнительной приведенной погрешности	
удельного электрического сопротивления, возникающей от изменения	
температуры окружающей среды в условиях эксплуатации, на каждые 10 °C	
от +20 °C, % от верхнего предела диапазона измерений	±0,5
Пределы допускаемой приведенной погрешности сигнализации, % от	
верхнего предела диапазона измерений	±6
Параметры контролируемой воды:	
- температура, °С	от +15 до +25
- давление, МПа, не более	10
Потребляемая мощность, В-А, не более	15
Срок безотказной работы солемера, ч, не менее	5000
Средний срок службы солемера, лет	10
Средняя наработка на отказ, ч	25000
Условия эксплуатации:	
- температура окружающей среды, °С	от 0 до +50
- относительная влажность воздуха при температуре +25 °C, %	от 20 до 100
- атмосферное давление, кПа	от 80 до 120
- вибрация частотой, Гц	от 5 до 60

Таблица 3

Помумоноромно опоможто	Масса, кг,	Габаритные размеры, мм, не более		
Наименование элемента	не более	высота	ширина	длина
Преобразователи	5,7	205	120	242
Датчики	7	340	115	180
Вольтметр М1611.2	1,5	126	120	120

Знак утверждения типа

наносится на титульный лист паспорта, руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Комплектность солемера соответствует таблице 4.

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Преобразователь измерительно-сигнализирующий		
БИС2		1
Комплект ЗИП в том числе:		
- ключ гаечный торцевой	АЖУ6.395.000	1
- уставка на сигнализируемое значение	2Б5.064.003	1
Датчик ДСВ *		
Комплект ЗИП в том числе:		
- съемник	АЖУ8.896.000	1
- прокладка	АЖУ7.840.003	1
- прокладка	АЖУ7.840.006	1
- ключ	2Б8.675.031	1
Руководство по эксплуатации	2.840.019 РЭ	1
Паспорт	АЖУ2.840.019 ПС	1

Продолжение таблица 4

Наименование	Обозначение	Количество		
Методика поверки	АЖУ2.840.019 МИ	1		
* Тип датчика согласовывается с заказчиком.				

Поверка

осуществляется по документу АЖУ2.840.019 МИ «Солемеры измерительно-сигнализирующие «ИСС1» Методика поверки», утвержденному ЗАО «Национальный Институт Метрологии Республики Армения» 08.02.2019 г.

Основные средства поверки:

- кондуктометр лабораторный КЛ-С-1, рег. № 46635-11;
- кондуктометр солемер МАРК 602, рег. № 25807-16;
- натрий хлористый химически чистый ГОСТ 4233-77;
- вода дистиллированная ГОСТ 6709-72.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) паспорт в виде наклейки

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные и технические документы, устанавливающие требования к солемерам измерительно-сигнализирующим «ИСС1»

ГОСТ 8.457-2015 ГСИ. Государственная поверочная схема для средств измерений электрической проводимости жидкостей

ГОСТ Р 8.722-2010 ГСИ. Анализаторы жидкости кондуктометрические. Методика поверки

ТУ25-05.2405-78 Технические условия

Изготовитель

Закрытое акционерное общество «Аналитприбор-Мек» (ЗАО «Аналитприбор-Мек»), Республика Армения

ИНН 05518664

Адрес: 3109, Республика Армения, г. Гюмри, ул. Хримяна Айрика, д. 27

Тел./факс: 374 312/5-46-20

E-mail: Analitpribor-Mek@mail.ru

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: (495) 437-55-77/(495) 437-56-66

Web-сайт: <u>www.vniims.ru</u> E-mail: <u>office@vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.