ФГУП «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» ФГУП «ВНИИМС»

СОГЛАСОВАНО

Заместитель директора по производственной метрологии ФГУП «ВНИИМС» — А.Е. Коломин «5» октября 2021 г.

Государственная система обеспечения единства измерений.

Дефектоскопы ультразвуковые УСД МЕТОДИКА ПОВЕРКИ

МП 203-16-2021

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика поверки предназначена для проведения первичной и периодической поверки дефектоскопов ультразвуковых УСД (далее — дефектоскопов), изготавливаемых ООО «НВП «КРОПУС», г. Ногинск, предназначенных для измерений глубины и координат залегания дефектов типа нарушения сплошности, измерений толщины изделий, а также для контроля однородности материалов, полуфабрикатов, готовых изделий и сварных соединений.

При поверке должна быть обеспечена прослеживаемость дефектоскопов к ГЭТ 2-2021 Государственный первичный эталон единицы длины. Реализация методики поверки обеспечена путем передачи единицы длины методом сравнения с мерой.

2. ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 В таблице 1 приведены операции, обязательные при проведении поверки. Таблица 1 – Операции, обязательные при поверке

Наименование операции	Номера	Проведение операции при	
	пунктов методики поверки	Первичной поверке	Периодической поверке
Внешний осмотр средства измерений	7	да	да
Проверка идентификационных данных программного обеспечения (ПО)	9	да	да
Проверка размаха импульса возбуждения	10.1	да	да
Проверка диапазона и абсолютной погрешности измерений временных интервалов	10.2	да	да
Проверка отклонения установки усиления в диапазоне от 0 до 50 дБ	10.3	да	да
Проверка отклонения измерений амплитуды сигнала в диапазоне от 20 до 100 % высоты экрана	10.4	да	да
Проверка диапазона и абсолютной погрешности измерений толщины изделия и глубины залегания дефектов при работе с прямым преобразователем	10.5	да	да
Проверка диапазона и абсолютной погрешности измерений координат залегания дефектов при работе с наклонным преобразователем	10.6	да	да

- 2.2 Проведение поверки отдельных измерительных каналов и (или) отдельных автономных блоков из состава СИ для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений согласно пункту 9 Приложения № 3 к Приказу Минпромторга России от 28 августа 2020г. № 2907 не предусмотрено. Поверка проводится с преобразователем, входящем в комплект поставки дефектоскопа на соответствующем диапазоне измерений, указанном в приложении А руководства по эксплуатации. Объем проведенной поверки отражается в сведениях о результатах поверки.
- 2.3 В случае отрицательного результата при проведении одной из операций, поверку прекращают и дефектоскоп признают не прошедшим поверку.

3. ТРЕБОВАНИЯ К УСЛОВИМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 При проведении поверки дефектоскопов должны соблюдаться следующие условия:
 - температура окружающей среды

от плюс 15 до плюс 25°C;

- относительная влажность воздуха

от 30 до 80 %.

4. ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению измерений при поверке и к обработке результатов измерений допускаются лица, имеющие квалификацию поверителя и изучившие работу с дефектоскопами.

5. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 Для поверки дефектоскопов применяют средства поверки, указанные в таблице 2.

Таблица 2 – Перечень СИ, применяемых при поверке

Номер пункта	Наименование и обозначение средств поверки; основные
методики поверки	технические и метрологические характеристики средства поверки
10.2	Осциллограф цифровой запоминающий TDS 1012, per. № 24019-06
10.3; 10.4; 10.5	Генератор сигналов сложной формы AFG3022B, per. № 41694-09
10.6	Комплекты мер для дефектоскопии А3-НК (меры КМД-4У ст.20 и меры КУСОТ ст.20), рег. № 79145-20
10.6; 10.7	Комплект контрольных образцов и вспомогательных устройств КОУ-2, рег. № 6612-99

5.2 Допускается применение средств поверки с метрологическими и техническими характеристиками, обеспечивающими требуемую точность передачи единиц величин поверяемому средству измерений.

6. ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки должны быть выполнены требования промышленной безопасности, регламентированные на предприятии в соответствии с действующим законодательством.

7. ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 Внешний осмотр и проверка комплектности и маркировки проводится визуально. При внешнем осмотре должно быть установлено соответствие дефектоскопов следующим требованиям:
 - наличие маркировочных обозначений;
 - комплектность поверяемого дефектоскопа должна соответствовать эксплуатационной документации;
 - отсутствие на дефектоскопе, преобразователях и соединительных кабелях механических повреждений, влияющих на работоспособность;
 - наличие и работоспособность всех органов регулировки и коммутации;
- 7.2 Дефектоскоп считается годным, если соответствует вышеуказанным требованиям.

8. ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

8.1 Поверяемый дефектоскоп и средства поверки следует подготовить к работе в соответствии с технической документацией на них.

9. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ (ПО)

- 9.1. Провести проверку идентификационных данных программного обеспечения (ПО) по следующей методике:
 - проверить идентификационное наименование программного обеспечения;
 - проверить номер версии программного обеспечения.
- 9.2 Дефектоскоп считается годным, если идентификационные данные соответствуют Таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	УСД
Номер версии (идентификационный номер) ПО	v.01.00 и выше
Цифровой идентификатор ПО	-

10. ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

10.1 Проверка размаха импульса возбуждения

- 10.1.1 Подготовить дефектоскоп к работе в соответствии с требованиями Руководства по эксплуатации.
- 10.1.2 Настроить параметры дефектоскопа (при их наличии в конкретной модели) следующим образом:
 - установить значение развертки не более 20 мкс;
 - установить значение задержки развертки равным 0;
 - установить максимальное значение амплитуды генератора;
 - отключить демпфер генератора;
 - отключить согласующие элементы генератора;
 - отключить демпфер приемника;
 - установить максимальную частоту посылок;
- 10.1.3 С помощью осциллографа и делителя, измерить размах амплитуды импульса возбуждения на выходе генератора.
- 10.1.4 Дефектоскоп считается годным, если размах импульса возбуждения (от пика до пика) не менее 100 В.

10.2 Проверка диапазона и абсолютной погрешности измерений временных интервалов

- 10.2.1 Настроить параметры дефектоскопа (при их наличии в конкретной модели) следующим образом:
 - установить значение развертки 50 мкс;
 - установить значение задержки развертки равным 0;
 - установить частоту генератора 5 МГц (для УСД-50 LFS, УСД-46LF, УСД-20СТ, УСД-20LF, УСД-LF 2,5 МГц);
 - установить число периодов генератора равным 1,0;
 - включить широкополосный режим приемника;
 - включить режим детектора «радио-сигнал»;
 - выбрать тип преобразователя раздельный (раздельно-совмещенный);
 - установить усиление 10 дБ;
 - установить начало а-Зоны равным 0,5 мкс;
 - установить ширину а-Зоны равным 10 мкс;
 - установить уровень порога а-Зоны равным 50% высоты экрана;
 - установить режим измерения времени в a-Зоне «по фронту»;
- 10.2.2 Собрать схему, представленную на рисунке 1. Для синхронизации генератора и дефектоскопа использовать согласующее устройство. Схема согласующего устройства представлена в Приложении 1.

Рисунок 1 - Схема подключения дефектоскопа к генератору

10.2.3 Установить начальные параметры генератора импульсов:

- синхронизация внешняя;
- тип сигнала синус;
- характер сигнала пачка;
- количество циклов 2;
- частота 1 МГц;
- начальный временной сдвиг Тсдв0 = 1 мкс.
- 10.2.4 Установить длительность развертки и отрегулировать амплитуду сигнала генератора и усиление дефектоскопа так, чтобы амплитуда импульса на экране дефектоскопа была не менее 70 % высоты экрана в диапазоне от 1 до 10 В.
- 10.2.5 Установить длительность развертки и положение строба первой зоны так, чтобы он пересекал импульс, и зафиксировать результат измерения времени Та в первой зоне канала дефектоскопа, как Тимп₀. Рассчитайте значение $T_0 = \text{Тимп}_0 \text{Тсдв}_0$. Это время обусловлено задержкой в проводах и приемном тракте дефектоскопа.
- 10.2.6 Установить временной сдвиг на генераторе $T_{\text{сдв}} = 10$ мкс. Снять показания на дефектоскопе $T_{\text{изм}}$.
- 10.2.7 Рассчитать значение измеренного временного интервала с учетом задержки в проводах и приемном тракте дефектоскопа:

$$T = T_{\text{MSM}} - T_0 \tag{1}$$

где T_{изм} – измеренный дефектоскопом временной интервал без учета задержки в кабеле и приемном тракте дефектоскопа, мкс;

То – время задержки в кабеле и приемном тракте дефектоскопа, мкс.

10.2.8 Повторить пункты 10.2.6 и 10.2.7 для всех Тсдв из ряда:

- 10, 20, 50, 100, 200, 500, 1000 мкс для дефектоскопов УСД-50 ФР, УСД-46 ХХ, УСД-20СТ, УСД-20 LF, УСД-10 LF;
 - 10, 100, 500, 1000, 2000 мкс для дефектоскопов УСД-50 IPS;
 - 10, 100, 500, 1000, 9999 мкс для дефектоскопов УСД-50 LFS;
 - 10, 50, 100, 200, 300 мкс для дефектоскопов УСД-20, УСД-10 RF.
- 10.2.9 Рассчитать значение абсолютной погрешности измерений временных интервалов (ΔT мкс) для каждого установленного временного сдвига ($T_{\text{сдв}}$ мкс) по формуле.

$$\Delta T = T - T_{CDB} \tag{2}$$

где T – среднее арифметическое значение временного интервала, измеренное дефектоскопом, мкс;

Т_{сдв} – значение временного интервала, установленное на генераторе, мкс.

10.2.10 Дефектоскоп считается годным, если диапазон измерений и абсолютная погрешность измерений временных интервалов соответствуют значениям, приведенным в таблице 4.

Таблица 4

Наименование характеристики	Значение
Диапазон измерений временных интервалов, мкс	
- УСД-50 ФР, УСД-46 XX, УСД-20СТ, УСД-20 LF, УСД-10 LF	от 1 до 999
- УСД-50 IPS	от 1 до 2000
- УСД-50 LFS	от 1 до 9999
- УСД-20, УСД-10 RF	от 1 до 300
Пределы допускаемой абсолютной погрешности измерений	$\pm (0.05 + 0.01 \cdot T)$
временных интервалов, мкс	V-124
где Т – измеренное значение временного интервала, мкс	

10.3 Проверка отклонения установки усиления в диапазоне от 0 до 50 дБ

- 10.3.1 Настроить параметры дефектоскопа (при их наличии в конкретной модели) следующим образом:
 - установить значение развертки 50 мкс;
 - установить значение задержки развертки равным 0;
 - установить частоту генератора 5 МГц

(для УСД-50 LFS, УСД-46LF, УСД-20СТ, УСД-20LF, УСД-LF-2,5 МГц);

- установить число периодов генератора равным 0,5;
- выбрать оптимальный фильтр приемника для частоты 2 МГц;
- включить режим детектора «радио-сигнал»;
- выбрать тип преобразователя раздельный (раздельно-совмещенный);
- установить начало а-Зоны равным 10 мкс;
- установить ширину а-Зоны равным 30 мкс;
- установить уровень порога а-Зоны равным 70% высоты экрана;
- 10.3.2 Подключить дефектоскоп к генератору по схеме, представленной на рисунке 1.
 - 10.3.3 Установить начальные параметры генератора импульсов:
 - синхронизация внешняя;
 - тип сигнала синус;

- характер сигнала пачка;
- количество циклов 10;
- частота 2 МГц;
- начальный временной сдвиг установить таким образом, чтобы сигнал, отображаемый на дефектоскопе, находился на середине развертки экрана;
- амплитуду сигнала на выходе генератора (A_0 дБ) установить таким образом, чтобы сигнал на экране дефектоскопа был на высоте 70 % экрана и результат измерения амплитуды Aa, дБ составлял 0 дБ.
 - 10.3.4 Установить усиление дефектоскопа (N_{уст}) 1 дБ.
- 10.3.5 Уменьшить амплитуду сигнала ($A_{\text{изм}}$) на генераторе импульсов до тех пор, пока результат измерения амплитуды Aa, дB снова не будет 0 дB.
 - 10.3.6 Рассчитать измеренное значение усиления дефектоскопа (Nизм) по формуле:

$$N_{H3M} = |A_0 - A_{H3M}| \tag{3}$$

где $A_{\text{изм}}$ – ослабление сигнала на магазине затуханий после приведения уровня сигнала к 70 % экрана, дБ;

 A_0 — начальное значение ослабления сигнала, установленное на магазине затуханий, дБ.

10.3.7 Рассчитать абсолютную погрешность установки усиления (Δ N) по формуле:

$$\Delta N = N_{\text{H3M}} - N_{\text{yct}}, \tag{4}$$

где N_{ycr} – усиление, установленное на дефектоскопе, дБ;

N_{изм} – измеренное значение усиления, дБ.

10.3.8 Повторить измерения отклонения установки усиления дефектоскопа по п.п. 10.3.4-10.3.7 для установленных значений усиления на дефектоскопе 10 дБ, 20 дБ, 30 дБ, 40 дБ и 50 дБ.

10.3.9 Дефектоскоп считается годным, если отклонение установки усиления в диапазоне от 0 до 50 дБ не превышает $\pm 2,0$ дБ.

10.4 Проверка отклонения измерений амплитуды сигнала в диапазоне от 20 до 100 % высоты экрана

- 10.4.1 Настроить параметры дефектоскопа (при их наличии в конкретной модели) следующим образом:
 - установить значение развертки 50 мкс;
 - установить значение задержки развертки равным 0;
 - установить частоту генератора 5 МГц

(дляУСД-50 LFS, УСД-46LF, УСД-20СТ, УСД-20LF, УСД-LF – 2,5 М Γ ц);

- установить число периодов генератора равным 1,0;
- выбрать оптимальный фильтр приемника для частоты 2 МГц;
- включить режим детектора «радио-сигнал»;
- выбрать тип преобразователя раздельный (раздельно-совмещенный);
- установить начало а-Зоны равным 10 мкс;
- установить ширину а-Зоны равным 30 мкс;
- установить уровень порога а-Зоны равным 20% высоты экрана;
- установить усиление приемника 20 дБ;
- включить режим измерения амплитуды в дБ относительно порога.
- 10.4.2 Подключить дефектоскоп к генератору по схеме, представленной на рисунке 1.
 - 10.4.3 Установить начальные параметры генератора импульсов:

- синхронизация внешняя;
- тип сигнала синус;
- характер сигнала пачка;
- количество циклов 5:
- частота 2 МГц;
- начальный временной сдвиг установить таким образом, чтобы сигнал, отображаемый на дефектоскопе, находился на середине развертки экрана;
- амплитуду сигнала на выходе генератора (A_0 дБ) установить таким образом, чтобы сигнал на дефектоскопе был на высоте 20 % экрана и результат измерения прибора "A, dB" был равным 0.
 - 10.4.4 Увеличить амплитуду сигнала на генераторе на 1 дБ ($A_0 + 1$ дБ).
- 10.4.5 Зафиксировать измеренное дефектоскопом значение амплитуды сигнала А, дБ.
- 10.4.6 Повторить измерения амплитуд сигналов на дефектоскопе при установленных значениях амплитуды на генераторе A_0+2 дБ, A_0+3 дБ, A_0+5 дБ, A_0+10 дБ, A_0+15 дБ.
- 10.4.7 Рассчитать значение абсолютной погрешности измерений амплитуды сигнала для каждого установленного на генераторе значения амплитуды по формуле:

$$\Delta A = A_{\text{H3M}} - A_{\text{VCT}}, \tag{5}$$

- где $A_{\text{изм}}$ среднее арифметическое значение амплитуды, измеренное на дефектоскопе; $A_{\text{уст}}$ установленное значение амплитуды на генераторе.
- 10.4.8 Дефектоскоп считается годным, если абсолютная погрешность измерений амплитуды сигнала в диапазоне от 20 до 100 % высоты экрана не превышает $\pm 1,0$ дБ.

10.5 Проверка абсолютной погрешности измерений толщины изделия и глубины залегания дефектов при работе с прямым преобразователем

- 10.5.1 Определение абсолютной погрешности измерений толщины изделия и глубины залегания дефектов выполняется на мерах КУСОТ и мерах КМД-4У из комплекта мер для дефектоскопии А3-НК, с использованием прямого ПЭП из комплекта поставки дефектоскопа или аналогичного. Возможно использование контрольного образца №2 из комплекта КОУ-2.
- 10.5.2 Подключить преобразователь к дефектоскопу и настроить параметры прибора для измерений толщины изделия в соответствии с характеристиками преобразователя: частота, толщина протектора.

Установить значение параметра "Скорость" в соответствии с данными о скорости из свидетельства о поверке мер КУСОТ и мер КМД-4У

- включить совмещенный режим (ДАТЧИК → Совм. Режим → ДА);
- режим контроля эхо (переключается в зависимости от типа подключенного преобразователя в дополнительном меню);
 - ТРАКТ → Полоса → 15 МГц;
 - TPAKT → Детектор → полный;
- Частота ЗИ. Установить в зависимости от частоты применяемого преобразователя, из паспорта на датчик или из маркировки на датчик (ГЕНЕРАТОР → Частота ЗИ);
 - ДАТЧИК \rightarrow Угол ввода \rightarrow 0;
 - ДАТЧИК → Протектор → 0;
 - ИЗМЕРЕНИЕ → Величина → S, мм;
 - ИЗМЕРЕНИЕ \rightarrow Время \rightarrow по фронту;
 - ИЗМЕРЕНИЕ → Импульс → a 6;

- 10.5.3 Выбрать не менее трех мер из комплекта мер КУСОТ и не менее одной меры с искусственным дефектом, значения толщины (глубины) которых равномерно распределены по диапазону измерений дефектоскопа с преобразователем, входящим в комплект поставки дефектоскопа. На каждой выбранной мере провести измерения.
- 10.5.4 Установить преобразователь на меру, предварительно нанеся на него слой контактной жидкости.
- 10.5.5 Перемещая преобразователь по мере, регулируя усиление в канале дефектоскопа и величину развертки, получить на экране 2 сигнала от донной поверхности меры, составляющие не менее 80 % высоты экрана.
 - 10.5.6 Установить строб А-зоны контроля на 1донный сигнал.

Установить строб б-зоны контроля на 2 донный сигнал.

- 10.5.7 Зафиксировать результат измерения толщины меры $S_{изм \ a-6}$ мм.
- 10.5.8 Повторить измерение толщины меры еще четыре раза, каждый раз заново устанавливая ПЭП на меру.
 - 10.5.9 Рассчитать среднее арифметическое значение толщины меры S_{cp} , мм.
- 10.5.10 Вычислить абсолютную погрешность измерений толщины (Δ мм) по формуле:

$$\Delta = S_{cp} - S_{o\delta p}, MM, \tag{6}$$

где $S_{\text{обр}}$ - номинальное значение толщины меры, взятое из свидетельства о поверке.

10.5.11 Измерение глубины залегания дефекта.

Установить значение параметра "Скорость" в соответствии с данными о скорости из свидетельства о поверке на меры.

Перемещая преобразователь по рабочей поверхности меры получить наибольшую амплитуду сигнала на дефектоскопе.

В случае использования контрольного образца №2 из комплекта КОУ-2 — получить наибольшую амплитуду сигнала от отверстия диаметром 6 мм, залегающего на глубине 44 мм.

- 10.5.12 Выполнить измерения и вычисления глубины залегания выявленного дефекта аналогично пп. 10.5.4-10.5.10.
- 10.5.13 Дефектоскоп считается годным, если абсолютная погрешность измерений толщины изделия и глубины залегания дефектов не превышают $\pm (0.1 + 0.05 \cdot S)$ мм, где S- измеренное значение толщины меры или глубины залегания дефекта, мм.

10.6 Проверка абсолютной погрешности измерений координат залегания дефектов при работе с наклонным преобразователем

- 10.6.1 Проверка абсолютной погрешности измерений координат дефекта выполняется с наклонным ПЭП, входящим в комплект дефектоскопа или аналогичном, на контрольных образцах № 2 и № 3 из комплекта КОУ-2.
- 10.6.2 Угол ввода УЗ волны преобразователя и время задержки в призме (протектор) взять из паспорта на ПЭП. Если данные отсутствуют, то определить точку ввода и протектор на контрольном образце № 3, а угол ввода ПЭП на контрольном образце № 2 в следующей последовательности:

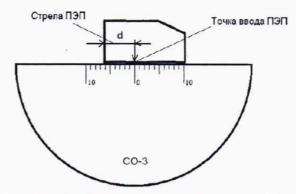


Рисунок 2 - Определение точки ввода ПЭП

10.6.2.1 Определение точки ввода ПЭП:

- установить преобразователь на поверхность контрольного образца № 3, обработанную контактной смазкой;
- перемещая ПЭП вперед-назад и поворачивая его вокруг оси на 5-10 угловых градусов, добиться максимального уровня эхо-сигнала от цилиндрической поверхности образца;
- метка «0» на образце контрольного образца № 3, перенесенная на боковую поверхность ПЭП, указывает на точку ввода преобразователя (рисунок 2).

10.6.2.2 Определение протектора:

- В дефектоскопе установить следующие параметры -
- ОСНОВНЫЕ → Скорость → 2000 м/с;
- ДАТЧИК → Угол ввода → 0;
- ДАТЧИК \rightarrow Протектор \rightarrow 0;
- ИЗМЕРЕНИЕ → Величина → S, мм;
- ИЗМЕРЕНИЕ → Образец → *** мм (данные взять из свидетельства о поверке контрольного образца № 3).
- установить преобразователь на поверхность контрольного образца №3, обработанную контактной смазкой;
- перемещая ПЭП вперед-назад и поворачивая его вокруг оси на 5-10 угловых градусов, регулируя усиление дефектоскопа и величину развертки, получить на экране два сигнала от цилиндрической поверхности контрольного образца №3 максимальной амплитуды;
 - установить строб а-зоны на первый сигнал и б-зоны на второй сигнал;
- измерить S_{0-a} и S_{a-6} , изменяя ИЗМЕРЕНИЕ \rightarrow Импульс $\rightarrow 0$ а или ИЗМЕРЕНИЕ \rightarrow Импульс \rightarrow а б;
- рассчитать величину протектора по формуле $S_{0-a}-S_{a-6}/2$. Рассчитать скорость поперечной волны по формуле

$$V = L / t, m/c$$
 (7)

где L – двойной радиус образца № 3, м,

t – время прохождения УЗК, равное S_{a-б}/2, с.

10.6.2.3 Определение угла ввода ПЭП:

- ввести в параметры дефектоскопа значение протектора, полученное в п. 10.6.2.2;
- установить преобразователь на поверхность контрольного образца № 2, обработанную контактной смазкой;
- перемещая ПЭП вперед-назад по контрольному образцу и поворачивая его вокруг оси на 5-10 угловых градусов, получить на экране дефектоскопа эхо-сигнал максимальной амплитуды от цилиндрического бокового отражателя диаметром 6 мм;

- для ПЭП с углами ввода в диапазоне от 40 до 60 °C, включительно, угол ввода определять по боковому цилиндрическому отражателю диаметром 6 мм, залегающему на глубине 44 мм. Для ПЭП с углами ввода в диапазоне от 60 до 75 °C, включительно, угол ввода определять по боковому цилиндрическому отражателю диаметром 6 мм, залегающему на глубине 15 мм.
- отсчет угла ввода ПЭП осуществлять по точке ввода ПЭП, определенной в п. 10.6.2.1;
- измерение угла ввода ПЭП следует повторить не менее трех раз, результат усреднить.

10.6.3 Проверка координат дефекта

Установить следующие параметры дефектоскопа:

- включить совмещенный режим (ДАТЧИК → Совм. Режим → ДА);
- режим контроля эхо (переключается в зависимости от типа подключенного преобразователя в дополнительном меню);
 - скорость ОСНОВНЫЕ \rightarrow Скорость \rightarrow *** м/с.
 - TPAKT → Полоса → 15 МГц;
 - TPAKT → Детектор → полный;
- Частота ЗИ. Установить в зависимости от частоты применяемого преобразователя, из паспорта на датчик или из маркировки на датчик (Γ EHEPATOP \rightarrow Частота ЗИ);
 - ДАТЧИК → Угол ввода → значение;
- ДАТЧИК → Протектор → из паспорта датчика или значение, измеренное в п. 10.6.2.2;
 - ИЗМЕРЕНИЕ \rightarrow Величина \rightarrow S, мм;
 - ИЗМЕРЕНИЕ \rightarrow Время \rightarrow по пику;
 - ИЗМЕРЕНИЕ → Импульс → 0 a;
- ИЗМЕРЕНИЕ → Образец → *** мм (данные взять из свидетельства о поверке контрольного образца № 2).
- 10.6.4 Установить преобразователь на поверхность контрольного образца № 2, обработанную контактной смазкой (рисунок 3).
- 10.6.5 Перемещая ПЭП по контрольному образцу получить эхо-сигнал максимальной амплитуды от цилиндрического отражателя диаметром 6 мм, залегающего на глубине 44 мм.
- 10.6.6 Изменить диапазон развертки так, чтобы эхо-сигнал от дефекта располагался по центру экрана.
- 10.6.7 Изменить усиление на дефектоскопе так, чтобы эхо-сигнал от дефекта занимал 80 % экрана.
 - 10.6.8 Установить строб а-зоны дефектоскопа на полученный сигнал от дефекта.

На экран дефектоскопа выводятся результаты измерений:

- Y глубина залегания дефекта;
- Х расстояние от точки ввода до проекции дефекта на поверхность;
- S расстояние по лучу.
- 10.6.9 Повторить операции по пунктам 10.6.4-10.6.8 еще четыре раза и вычислить средние арифметические значения величин Y, X и S и получить Y_{изм}, X_{изм} и S_{изм}.

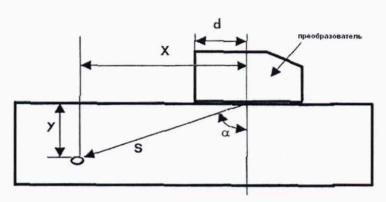


Рисунок 3 - Определение координат дефекта при работе с наклонным ПЭП Y – глубина залегания дефекта, X – расстояние от точки ввода до проекции дефекта на поверхность, S – расстояние по лучу, d – стрела преобразователя, α - угол ввода

10.6.10 По данным из свидетельства о поверке на контрольный образец и используя номинальные значения местоположения точки ввода на преобразователе и его угол ввода α (п. 10.6.2), по схеме на рисунке 3 вычислить номинальные значения $Y_{\text{ном}}$, $X_{\text{ном}}$ и $S_{\text{ном}}$ по формулам:

$$Y_{HOM} = A - B \cdot \cos\alpha \tag{8}$$

$$X_{\text{HOM}} = A \cdot tg\alpha - B \cdot \sin\alpha \tag{9}$$

$$S_{HOM} = A / \cos \alpha - B \tag{10}$$

где А – глубина до центра отражателя, мм;

В – радиус отражателя, мм;

 α – угол ввода, °.

10.6.11 Вычислить абсолютную погрешность измерения координат дефектов (Y, X, S) по формулам:

$$\Delta_{\rm Y} = {\rm Y}_{\rm H3M} - {\rm Y}_{\rm HOM}, \, {\rm MM}, \tag{11}$$

$$\Delta_{X} = X_{\text{H3M}} - X_{\text{H0M}}, MM, \tag{12}$$

$$\Delta_{S} = S_{\text{изм}} - S_{\text{ном}}, MM, \tag{13}$$

где $Y_{изм}$, $X_{изм}$ и $S_{изм}$ – измеренные средние арифметические значения глубины залегания дефекта, расстояния от точки ввода до проекции дефекта на поверхность, расстояния по лучу;

 $Y_{\text{ном}}$, $X_{\text{ном}}$ и $S_{\text{ном}}$ – номинальные значения глубины залегания дефекта, расстояния от точки ввода до проекции дефекта на поверхность, расстояния по лучу.

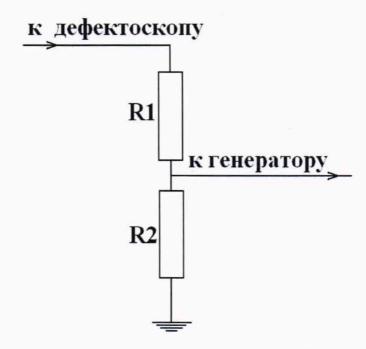
10.6.12~ При работе с наклонным преобразователем абсолютная погрешность измерений координат дефектов (Y, X, S) не должна превышать $\pm (0.1 + 0.05 \cdot S)$ мм, где S – измеренное значение толщины меры или глубины залегания дефекта, мм..

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

11.1 Сведения о результатах поверки (как положительные, так и отрицательные) передаются в Федеральный информационный фонд по обеспечению единства измерений (ФИФ).

- 11.2 При положительных результатах поверки дополнительно по заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений на бумажном носителе. Знак поверки в виде оттиска клейма и (или) наклейки наносится на свидетельство о поверке.
- 11.3 При отрицательных результатах поверки дополнительно по заявлению владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности на бумажном носителе.

Зам. начальника отдела 203


Начальник лаборатории 203/3

Е.А. МиловановаМ. Л. БабаджановаТ. А. Корюшкина

Младший научный сотрудник лаб. 203/3

Т. А. Корюшкина

Согласующее устройство

Резисторы R1, R2 подбираются таким образом, чтобы выходное напряжение соответствовало срабатыванию синхровхода генератора. Сумма сопротивлений R1+R2 должно быть не меньше 20 кОм для предохранения выхода генератора дефектоскопа.