ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Сибирь» по объекту НПС-4 ЛПДС «Южный Балык»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Сибирь» по объекту НПС-4 ЛПДС «Южный Балык» (далее – АИИС КУЭ), предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трёхуровневую автоматизированную систему с централизованным управлением и распределением функций измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), включающие в себя измерительные трансформаторы тока (далее — TT), трансформаторы напряжения (далее — TH), счетчики активной и реактивной электроэнергии (далее — счётчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

2-й уровень — информационно-вычислительный комплекс электроустановки (далее - ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора и передачи данных типа ЭКОМ 3000 (далее — УСПД) со встроенным источником точного времени ГЛОНАСС/GPS и каналообразующую аппаратуру.

3-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее – БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (далее – АРМ), серверы синхронизации времени ССВ-1Г (регистрационный номер в федеральном информационном фонде по обеспечению единства измерений (далее – Рег. № 39485-08) и программное обеспечение (далее – ПО) ПК «Энергосфера».

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициентов трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы.

На верхнем – третьем уровне системы выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации – участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся на сервере БД. Данные с сервера БД передаются на APM, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на APM, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа APM к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем АИИС КУЭ ОАО «АК «Транснефть» (Рег. № 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую АИИС КУЭ и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (далее – СОЕВ). СОЕВ предусматривает поддержание единого времени на всех уровнях системы (ИИК, ИВКЭ и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г, входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК. Резервный сервер синхронизации ИВК используется при выходе из строя основного сервера.

Синхронизация времени в УСПД осуществляется по сигналам единого времени, принимаемым через устройство синхронизации системного времени (УССВ), реализованного на ГЛОНАСС/GPS-приемнике в составе УСПД. Время УСПД периодически сличается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация часов УСПД проводится независимо от величины расхождения времени.

В случае неисправности источника точного времени ГЛОНАСС/GPS, встроенного в устройство сбора и передачи данных типа ЭКОМ 3000 имеется возможность синхронизации часов УСПД от уровня ИВК ПАО «Транснефть».

Сличение часов счетчиков с часами УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 1 с.

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера». Метрологически значимая часть содержится в модуле, указанном в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПК «Энергосфера» Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов (далее – ИК) и их основные метрологические и технические характеристики приведены в таблицах 2–4.

Таблица 2 – Состав ИК АИИС КУЭ

1 40	Таолица 2 – Состав ик Айис Ку Э					
I	Номер и наименование ИК	TT	ТН	Счетчик	УСПД	Сервер синхронизации времени/ Сервер БД
	1	2	3	4	5	6
1	3РУ-10 кВ НПС-4 Южный Балык, 1 СШ 10 кВ, яч.1	ТОЛ-СЭЩ Ктт = 1500/5 Кл. т. = 0,5S Рег. № 51623-12	ЗНОЛ Ктн = 10000Ö8/100Ö8 Кл. т. = 0,5 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. = 0,2S/0,5 Per. № 36697-17	-3000 7049-14	.B-1Γ 39485-08/ BL 460c Gen8, tt BL 460c G6
2	3РУ-10 кВ НПС-4 Южный Балык, 2 СШ 10 кВ, яч.2	ТОЛ-СЭЩ Ктт = 1500/5 Кл. т. = 0,5S Рег. № 51623-12	ЗНОЛ Ктн = 10000Ö8/100Ö8 Кл. т. = 0,5 Per. № 46738-11	СЭТ-4ТМ.03М Кл. т. = 0,2S/0,5 Рег. № 36697-17	ЭКОМ Per. № 1	CCB-1 Per. № 3944 HP ProLiant BL

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2. Допускается замена УСПД и сервера синхронизации времени на аналогичные утвержденных типов.
- 3. Замена оформляется техническим актом в установленном на АО «Транснефть-Сибирь» порядке, все изменения вносятся в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.
- 4. Кл. т. класс точности, Ктн коэффициент трансформации трансформаторов напряжения, Ктт коэффициент трансформации трансформаторов тока.

Таблица 3 – Основные метрологические характеристики ИК АИИС КУЭ

	1	1	
	Вид электроэнергии		Границы
Номера ИК		Границы основной	погрешности в
		погрешности $(\pm \delta)$, %	рабочих условиях
			$(\pm\delta)$, %
1.2	Активная	1,22	1,36
1, 2	Реактивная	1,84	2,17
Пределы допускаемой погрешности СОЕВ		±5	
АИИС КУЭ, с			

Примечания:

- 1. Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 17°C до плюс 30°C для ИК №№ 1-2, при $\cos \phi = 0.8, \, 0.2I_{\scriptscriptstyle H} \le I < I_{\scriptscriptstyle H}$.
- 2. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 100җо 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,8
- температура окружающей среды °C:	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- частота, Гц	от 49,6 до 50,4
- коэффициент мощности.	от 0,5 инд до 0,8, емк
диапазон рабочих температур окружающей среды, °С:	
- для TT и TH	от -45 до +40
- для счетчиков	от -40 до +60
- для УСПД	от -30 до +50
- для сервера	от +10 до +35

Продолжение таблицы 4

Наименование характеристики	Значение
1	2
Надежность применяемых в АИИС КУЭ компонентов:	
счётчики электрической энергии СЭТ-4ТМ.03М:	
- среднее время наработки на отказ, ч, не менее	220000
- среднее время восстановления работоспособности, ч, не более	2
УСПД	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	24
CCB-1Γ:	
- среднее время наработки на отказ, ч, не менее	15000
- среднее время восстановления работоспособности, ч	2
Сервер HP ProLiant BL 460c Gen8:	
– среднее время наработки на отказ Т, ч, не менее	261163
- среднее время восстановления работоспособности tв не более, ч;	0,5
Сервер HP ProLiant BL 460c G6:	
– среднее время наработки на отказ Т, ч, не менее	264599
- среднее время восстановления работоспособности tв не более, ч.	0,5
Глубина хранения информации	
счётчики электрической энергии:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут, не	
менее	114
- при отключении питания, лет, не менее	40
УСПД:	
- тридцатиминутные приращения электроэнергии, сут, не менее	35
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений, состояние объектов и средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи; в журналах событий фиксируются факты:
 - журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
 - журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

- электросчетчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера БД;

наличие защиты на программном уровне:

- пароль на электросчетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 минут (функция автоматизирована);
 - сбора результатов измерений не реже одного раза в сутки (функция автоматизирована)

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Сибирь» по объекту НПС-4 ЛПДС «Южный Балык» типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ.

Наименование	Тип/обозначение	Кол-во,
Паименование	Тип/ооозначение	шт./экз
1	2	3
Трансформатор тока	ТОЛ-СЭЩ	6
Трансформатор напряжения	ЗНОЛ	6
Счётчики электрической энергии	CЭT-4TM.03M	2
трёхфазные многофункциональные	C31-41 W1.03W1	2
УСПД	ЭКОМ-3000	1
Сервер синхронизации времени	ССВ-1Г	2
Сервер БД	HP ProLiant BL 460c	2
Сервер с программным обеспечением	ПК «Энергосфера»	1
Методика поверки	МП 112-2019	1
Формуляр	ИЦЭ 1279РД-19.00.ФО	1
Руководство по эксплуатации	-	1

Поверка

осуществляется по документу МП 112-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Сибирь» по объекту НПС-4 ЛПДС «Южный Балык». Методика поверки», утвержденному ООО «Спецэнергопроект» 29.10.2019 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения $6/\sqrt{3}...$ 35 кВ. Методика поверки на месте эксплуатации»;

- по МИ 3195-2018. «ГСИ. Методика измерений мощности нагрузки измерительных трансформаторов напряжения в условиях эксплуатации»;
- по МИ 3196-2018. «ГСИ. Методика измерений мощности нагрузки измерительных трансформаторов тока в условиях эксплуатации»;
- по МИ 3598-2018 «ГСИ. Методика измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации»
- счетчиков СЭТ-4ТМ.03М— по документу ИЛГШ.411152.145РЭ1 «Счётчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» 03.04.2017 г;
- ЭКОМ-3000 по документу ПБКМ.421459.007 МП «устройство сбора и передачи данных «ЭКОМ-3000». Методика поверки», утвержденному ФГУП «ВНИИМС» 20.04.2014 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы GlobalPositioningSystem (GPS)), Per. № 46656-11;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Сибирь» по объекту НПС-4 ЛПДС «Южный Балык», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Акционерное общество «Транснефть – Сибирь»

(АО «Транснефть – Сибирь»)

ИНН 7201000726

Адрес: 625027, г. Тюмень, ул. Республики, д. 139

Телефон: +7 (3452) 32-27-10 Факс: +7 (3452) 20-25-97

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «Энергия»

(«килдэнЄ» ДИ» ООО)

ИНН 3702062476

Адрес: 195009, г. Санкт-Петербург, Свердловская набережная, д. 14/2 литера А, помещение 11-Н

Телефон/факс: +7 (812) 245-07-60

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, помещ. І, комн. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312429 от 30.01.2018 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

A.B.	Кулешов

М.п. «____ » ______ 2019 г.