ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы автоматизированные контроля и управления установок получения газообразного азота и сухого воздуха (АСУ ГАиСВ)

Назначение средства измерений

Системы автоматизированные контроля и управления установок получения газообразного азота и сухого воздуха (АСУ ГАиСВ), далее – АСУ ГАиСВ или системы, предназначены для измерений значений технологических параметров: давления, разности давлений, расхода, температуры, концентрации, влажности.

Описание средства измерений

В АСУ ГАиСВ первичные измерительные преобразователи (ПИП) непрерывно преобразуют измеряемые параметры в электрический сигнал силы или напряжения постоянного тока, сопротивления постоянному току, который поступает в модули аналогового ввода контроллеров, где он преобразуется к цифровому виду и передается для визуализации и дальнейшей обработки на операторскую станцию для формирования сигналов управления и регулирования, формирования функций сигнализации и блокировок, стабилизации основных технологических параметров промышленных установок получения газообразного азота и сухого воздуха КИП с помощью газоразделительной полимерной мембраны и компрессорного блока.

Системы используются в различных отраслях промышленности, таких как газовой, нефтехимия и на других предприятиях, использующих сухой воздух и продуктов его разделения (азот и другие) в качестве самостоятельной системы или в составе других систем.

АСУ ГАиСВ относятся к агрегатным, проектно-компонуемым для каждого объекта системам, с переменным составом датчиков, модулей и блоков, измерительные каналы которых выполнены по трехуровневой схеме.

Нулевой уровень систем содержит первичные измерительные преобразователи технологических параметров в сигналы постоянного тока или в электрическое сопротивление (термопреобразователей сопротивления).

Первый уровень состоит из программируемого контроллера с необходимым количеством модулей ввода/вывода, преобразующего аналоговые сигналы к цифровому виду в единицах измеряемого физического параметра, осуществляющего обработку полученных сигналов и формирование сигналов управления по заданной программе, самодиагностику функционирования.

Второй уровень систем включает в себя операторскую станцию на базе ПЭВМ; инжиниринговую станцию; сетевое и коммуникационное оборудование для связи и обмена информационными потоками между компонентами АСУ ГАиСВ через локальную промышленную сеть, периферийные устройства. Вместо операторской станции может быть использована панель оператора.

Структурная схема систем показана на рисунке 1.

На среднем (первом) уровне систем используются следующие типы контроллеров:

- контроллеры программируемые Simatic S7-300 (регистрационный номер в Федеральном информационном фонде № 15772-11, далее регистр. №), Simatic S7-400 (Регистр. № 66697-17), S7-1200 (Регистр. № 63339-16), S7-1500 (Регистр. № 60314-15);
- комплексы измерительно-вычислительные и управляющие Logix PAC (Регистр. № 51228-12), Logix D (Регистр. № 64136-16), PLC (Регистр. № 15652-09) на базе контроллеров ControlLogix, СомрасtLogix, Фирма «Rockwell Automation Allen-Bradley», США.

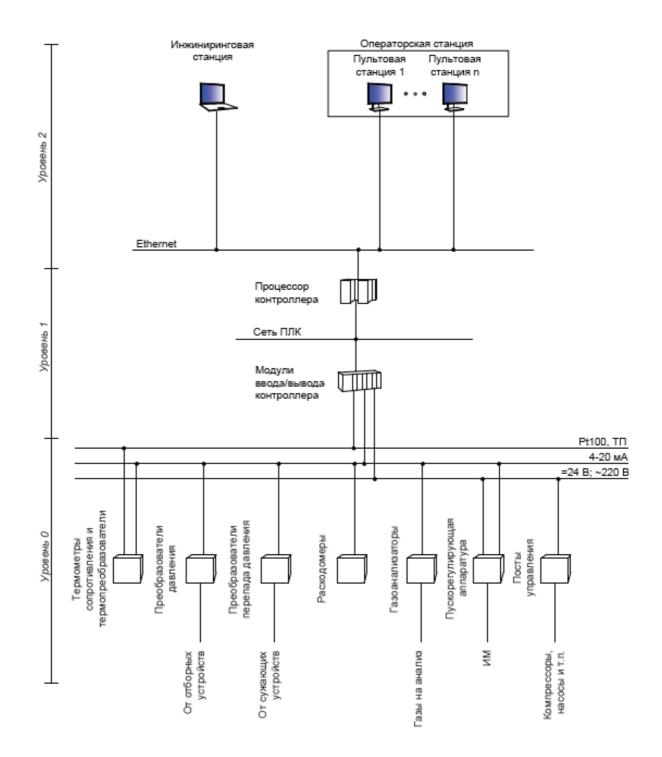


Рисунок 1 - Структурная схема АСУ ГАиСВ

Модули ввода аналоговых сигналов, используемые в составе каждого из контроллеров АСУ ГАиСВ, и пределы допускаемой основной погрешности приведены в таблице 1.

Конструктивно аппаратура систем располагается в виде стоек, щитов и шкафов.

Шкафы (стойки, щиты) с контроллерами при необходимости снабжены системой регулирования температурного режима.

Программное обеспечение

Программное обеспечение (ПО) АСУ ГАиСВ состоит из ПО контроллеров и ПО второго, верхнего уровня - SCADA-системы (конкретный тип SCADA-системы и типа контроллера определяется проектом), варианты используемого ПО приведены в таблице 1.

Программные средства верхнего уровня - SCADA-система могут содержать:

- серверную часть (шлюзы) для сбора и передачи информации контроллеров;
- архивную станцию для накопления и долговременного хранения различных видов информации;
- клиентскую часть, устанавливаемую на АРМ, обеспечивающую визуализацию параметров;
- инженерную станцию для изменения технологического программного обеспечения, конфигурирования ИК и оборудования системы.

Для конкретного объекта с выделенной инженерной станции верхнего уровня системы, доступ к которой защищен как административными мерами (установка в отдельном помещении), так и многоуровневой защитой по паролю доступа к операционной системе, SCADA и настроечным параметрам, создается конфигурация систем (количество каналов, типы датчиков, диапазоны измерений и т.д.) путем настройки программы в контроллере на этом объекте, конфигурация хранится в памяти контроллера.

Все метрологически значимые вычисления выполняются ΠO контроллеров и первичных измерительных преобразователей (при наличии ΠO), метрологические характеристики которых нормированы с учетом влияния на них встроенного ΠO .

Для защиты накопленной и текущей информации, конфигурационных параметров ИК от несанкционированного доступа в системах предусмотрен многоступенчатый контроль доступа:

- к датчикам недоступны порты конфигурирования датчиков (при наличии у датчиков такой возможности), выдается оперативное сообщение о недостоверности сигнала при обрыве или коротком замыкании канала;
- ко вторичной части системы запираемые шкафы, доступ к которым требует авторизации в соответствии со спецификой объекта, на котором устанавливается система) и программный контроль доступа (доступ по паролю).

Уровень защиты ПО «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)			Значения		
Идентификационное наименование ПО	SIMATIC WinCC	Factory Talk View Studio	Factory Talk View Machine Edition		FAST/ TOOLS
Номер версии (идентификационный номер) ПО	не ниже 7.0	не ниже 7.0	не ниже 8.0	не ниже 4.2а	не ниже R9/03

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики ИК давления

Первичный измерительный преобразователь (ПИП)	Верхние пределы/ диапазоны измерений VK^1	Характеристики погрешности ¹ ПИП ү _Д , % - ИК избыточного д	Вторичная элект АСУ ГА модули ввода аналоговых сигналов	АиСВ Характеристики	Характеристики погрешности ¹ ИК уик, %
Датчики давления Метран-150 (Регистр. № 32854-13) модели CG, CGR, исполнения 1-5;	Верхние пределы от 1,0 до 10 МПа	±0,075; ±0,1; ±0,2;	цавления		
модели TG, TGR, исполнения 2-5	от 1,0 до 60 МПа, для модели TGR до 63 МПа	±0,5			
Преобразователи давления измерительные ЕЈ* (Регистр. № 59868-15); с датчиком ЕЈХ430А, исп. А исп.В	Верхние пределы от 1,0 до 3,5 МПа от 80 кПа до 16 МПа	от ±0,04 до ±(0,005+0,005 K)	в соответствии с выбранным для использования в	±0,05; ±0,1; ±0,15;	γ _{ик} = ±(γ _Д +γ _к)
с датчиком ЕЈА430А, исп. А исп. В с датчиком ЕЈХ430А, исп. А исп.В с датчиком ЕЈА440А, исп. С исп.D с датчиком ЕЈА510А, ЕЈА530А, исп. А исп. В исп. В	от 30 кПа до 3,0 МПа от 140 кПа до 14 МПа от 1,0 до 3,5 МПа от 80 кПа до 16 МПа от 5,0 до 32 МПа от 5 кПа до 50 МПа от 10 до 200 кПа от 0,1 до 2,0 МПа от 0,5 до 10 МПа	±0,075	системе типом контроллеров, столбец 2 таблицы 5	±0,2; ±0,25; ±0,3; ±0,35; ±0,5; ±0,6	MK

Первичный измерительный преобразователь (ПИП)	Верхние пределы/ диапазоны измерений ИК ¹	Характеристики погрешности ¹ ПИП $\gamma_{\rm Д}$, %	Вторичная элект АСУ ГА модули ввода аналоговых сигналов	-	Характеристики погрешности ¹ ИК ү _{ИК} , %
		1. ИК избыточного д	авления	·	
Преобразователи давления измерительные Sitrans P типа 7MF (Регистр. № 61003-15), модели 7MF8010, 7MF1120	Верхние пределы от 0,016 до 4,0 МПа до 32 МПа	γ_{A} = ±0,2 % γ_{A} = ±0,25 %			
модели SITRANS P P300, SITRANS P DSIII, SITRANS P P300 PA, SITRANS P DS1III PA	до 70 МПа	$\gamma_{\rm A} = \pm (0.005 \text{ K} + 0.07) \%$	в соответствии с выбранным для	±0,05; ±0,1; ±0,15;	
Преобразователи давления ST 3000 (Регистр. № 14250-05) модели STG,	Верхние пределы от 35 кПа до 3,5 МПа от 700 кПа до 21 МПа	$\gamma_{\rm A} = \pm 0.1$ %	использования в системе типом контроллеров, столбец 2 таблицы 5	±0,2; ±0,25; ±0,3; ±0,35; ±0,5; ±0,6	$\gamma_{\rm MK} = \pm (\gamma_{\rm J} + \gamma_{\rm K})$
модели STR	от 35 кПа до 21 МПа	$\gamma_{ extsf{ iny \eta}} = \pm 0.15 \%$			

Первичный измерительный	Верхние пределы/	Характеристики погрешности 1	Вторичная электрическая часть АСУ ГАиСВ		Характеристики
преобразователь (ПИП)	диапазоны измерений ИК ¹	пип ул %	модули ввода аналоговых сигналов	Характеристики погрешности ¹ у _к , %	погрешности ¹ ИК ү _{ИК} , %
		2. ИК дифференциального	о давления		
Датчики давления Метран-150, модели CD, CDR; исполнения 0-5	Верхние пределы от 0,1 до 10 000 кПа	$\gamma_{A}=\pm0.075~\%$ $\gamma_{A}=\pm0.1~\%$ $\gamma_{A}=\pm0.2~\%$ $\gamma_{A}=\pm0.5~\%$			
Преобразователи давления измерительные ЕЈ*; с датчиком ЕЈА110А, исп. L исп. М исп. Н исп. V с датчиком ЕЈА120А, исп. L с датчиком ЕЈА130А, исп. М исп. Н	Верхние пределы от 0,5 до 10 кПа от 1 до 100 кПа от 5 до 500 кПа от 0,14 до 14 МПа от 0,1 до 1 кПа от 1 до 100 кПа от 5 до 500 кПа	$\gamma_{ extsf{ iny I}} = \pm 0.075 \%$	в соответствии с выбранным для использования в	±0,05; ±0,1; ±0,15; ±0,2; ±0,25; ±0,3;	γ _{ик} = ±(γд+γ _к)
Преобразователи давления измерительные Sitrans P типа 7MF, модели SITRANS P DSIII, SITRANS P DSIII PA, SITRANS P DS1III FF	Верхние пределы от 0,5 до 3 МПа	$\gamma_{\text{Д}}$ = ± 0.15 % при K до 10; $\gamma_{\text{Д}}$ = ± 0.3 % при K от 10 до 30; $\gamma_{\text{Д}}$ = $\pm (0.0075 \text{ K} + 0.075)$ % при K от 30 до 100	системе типом контроллеров, столбец 2 таблицы 5	±0,35; ±0,5; ±0,6	
Преобразователи давления ST 3000, модели STD,	Верхние пределы от 0,1 кПа до 21 МПа	γ _Д = от ±0,075 до ±0,2 %			
модели STR	от 2,5 до 700 кПа	$\gamma_{ extsf{ iny J}} = \pm 0.2 \%$			

Первичный измерительный	Верхние пределы/	Характеристики погрешности ¹	Вторичная электрическая часть АСУ ГАиСВ		Характеристики
преобразователь (ПИП)	диапазоны измерений ИК ¹		модули ввода аналоговых сигналов	Характеристики погрешности 1 γ_{K} , %	погрешности ¹ ИК ү _{ИК} , %
		3. ИК давления-разрез	жения		
Датчики давления Метран-150, модели CG, CGR исполнение 1 исполнения 2-4; модели TG, TGR, исполнения 2-4	Диапазоны измерений с поддиапазонами от -2 до 2 кПа от - 98 до 1600 кПа	γ_{A} = ±0,075 % γ_{A} = ±0,1 % γ_{A} = ±0,2 % γ_{A} = ±0,5 %			
преобразователи давления измерительные ЕЈ*; с датчиком ЕЈА110А, исп. L исп. М исп. Н исп. V с датчиком ЕЈА120А, исп. L с датчиком ЕЈА130А, исп. М исп. Н	Диапазоны измерений с поддиапазонами от -10 до 10 кПа от -100 до 100 кПа от -500 до 500 кПа от -0,5 до 14 МПа от -1 до 1 кПа от 1 до 100 кПа от 5 до 500 кПа	$\gamma_{ extsf{ iny I}} = \pm 0.075 \%$	в соответствии с выбранным для использования в системе типом	$\pm 0.05; \pm 0.1; \pm 0.15; \\ \pm 0.2; \pm 0.25; \pm 0.3; \\ \pm 0.35; \pm 0.5; \pm 0.6$	$\gamma_{\rm MK} = \pm (\gamma_{\rm M} + \gamma_{\rm K})$
Преобразователи давления измерительные Sitrans P типа 7MF; моделей SITRANS P DSIII SITRANS P DSIII PA, SITRANS P DS1III FF		$\gamma_{\text{Д}}$ = ±0,3 % при K от 10 до 30; $\gamma_{\text{Д}}$ = ±0,15 % при K до 10; $\gamma_{\text{Д}}$ = ±(0,0075 K+0,075) % при K от 30 до 100	контроллеров, столбец 2 таблицы 5		
Преобразователи давления ST 3000 модели STD,	Диапазон измерений с поддиапазонами от 0,1 кПа до 21 МПа	γ _д = от ±0,075 до ±0,2 %			
модели STR	от 2,5 до 700 кПа	$\gamma_{ m A}\!\!=\pm0,\!2$ %			

Продолжение таолицы 2					
Первичный измерительный преобразователь (ПИП)	Верхние пределы/ диапазоны измерений ИК ¹	Характеристики погрешности ¹ ПИП γ _Д , %	Вторичная элект АСУ Г модули ввода аналоговых сигналов	АиСВ Характеристики	Характеристики погрешности ¹ ИК ү _{ИК} , %
		4. ИК атмосферного д	•	, , , , , , , , , , , , , , , , , , , ,	
Датчики давления Метран-150, модели TA, TAR	Верхние пределы от 3,2 до 5 МПа	γ_{A} = ±0,1 % γ_{A} = ±0,2 % γ_{A} = ±0,5 %			
Преобразователи давления измерительные ЕЈ*; с датчиком ЕЈАЗ10А, исп. L исп. М исп. А с датчиками ЕЈА510А, ЕЈА530А, исполнение А исполнение В исполнение С	Верхние пределы от 0,67 до 10 кПа от 1,3 до 130 кПа от 0,003 до 3 МПа от 10 до 200 кПа от 0,1 до 2 МПа от 0,5 до 5 МПа	γ _д = от ±0,075 до ±0,2 %	в соответствии с выбранным для использования в	±0,05; ±0,1; ±0,15;	
Преобразователи давления измерительные Sitrans P типа 7MF; модели 7MF8010, 7MF1120,	Верхние пределы от 0,016 до 4 МПа до 5 МПа	γ_{A} = ±0,2 % γ_{A} = ±0,25 %	системе типом контроллеров, столбец 2 таблицы 5	$\pm 0,2; \pm 0,25; \pm 0,3; \\ \pm 0,35; \pm 0,5; \pm 0,6$	$\gamma_{\rm MK}$ = ±($\gamma_{\rm M}$ + $\gamma_{\rm K}$)
модели SITRANS P P300, SITRANS P DSIII, SITRANS P P300 PA, SITRANS P DS1III PA	от 1,6 до 10 МПа	$\gamma_{\text{Д}} \!\!=\! \text{ от } \pm 0,1$ до $\pm 0,4~\%$			
Преобразователи давления ST 3000 модели STA,	Верхние пределы от 6,7 до 104 кПа от 35 кПа до 3,5 МПа	$\begin{array}{c} \gamma_{\text{A}} = \pm 0.075 \ \% \\ \gamma_{\text{A}} = \pm 0.1 \ \% \end{array}$			
модели STR	от 35 кПа до 3,5 МПа	$\gamma_{\text{A}} = \pm 0.1 \%$			

Примечание - γ – пределы допускаемых приведенных погрешностей ИК $\gamma_{\rm ИК}$, ПИП (датчика) $\gamma_{\rm Д}$ и модуля контроллера $\gamma_{\rm K}$, приведенных к диапазону измерений.

Таблица 3 - Метрологические характеристики ИК температуры на базе термопреобразователей сопротивления

Первичный измерительный преобразователь (ПИП)	Диапазоны измерений ИК	Характеристики погрешности 1 ПИП $\Delta_{ m J}$, $^{\circ}{ m C}$	Вторичная электр	ическая часть АСУ иСВ X арактеристики погрешности Δ_{K} , $^{\circ}$ С	Характеристики погрешности 1 ИК $\Delta_{\rm UK},\%$
5. И	К температуры на базе тер	омопреобразователей сог			
Датчики температуры ТСПТ (Регистр. № 57175-14) ТСПТ Ех, (Регистр. № 57176-14) кл. В, С. Термометры сопротивления из платины технические ТПТ (Регистр. № 46155-10) кл. В, С. Термометры сопротивления из платины технические ТПТ (Регистр. № 39144-08) кл. А, В, С. Термопреобразователи сопротивления ТК, ТГ (Регистр. № 47279-11) кл. А, В.	от -100 до +450 °C от -100 до +300 °C от -196 до +200 °C от -196 до +250 °C от -196 до +300 °C от -196 до +400 °C от -196 до +500 °C	$\Delta_{\text{Д}}$ = ±(0,15+0,002 t) °C (кл. A) $\Delta_{\text{Д}}$ = ±(0,3+0,005 t) °C (кл. B) $\Delta_{\text{Д}}$ = ±(0,6+0,01 t) °C (кл. C)	в соответствии с выбранным для использования в системе типом контроллеров, столбец 3 таблицы 5	$\Delta_{ ext{K}}=$ от $\pm 0,2$ до $\pm 1,0~^{\circ} ext{C}$	$\Delta_{ m MK}$ = $\pm (\Delta_{ m J} + \Delta_{ m K})$

Примечания

 $^{1 \}stackrel{1}{\Delta}$ – пределы допускаемых абсолютных погрешностей ИК $\Delta_{\rm HK}$, ПИП (датчика) $\Delta_{\rm L}$ и модуля контроллера $\Delta_{\rm K}$.

² t – измеренная температура.

Таблица 4 - Метрологические характеристики ИК температуры на базе термометров микропроцессорных, расхода, концентрации

1 аолица 4 - Метрологические хара	актеристики тис темпер	итуры на оазе термометр			жини
		V	Вторичная элект	Характеристики	
Первичный измерительный преобразователь (ПИП)	Диапазоны измере- ний ИК	Характеристики погрешности 1 ПИП $\gamma_{\rm Д},\%;\Delta_{\rm Д},{}^{\circ}{ m C}$	АСУ Га модули ввода аналоговых сигналов	Xарактеристики погрешности¹ γ _K , %	погрешности ¹ ИК γик, %; Δ _{ИК} , °C
	6. ИК темпе	ратуры на базе термомет	ров микропроцессорн	ых	
Термопреобразователи с унифицированным выходным сигналом Метран-270, Метран-270-Ех (Регистр. № 21968-11): ТСМУ Метран-274, ТСПУ Метран-276,	от -50 до +50 °C от -50 до +100 °C от 0 до +180 °C от -15 до+250 °C от 0 до +300 °C от 0 до +320 °C	$\gamma_{ extsf{ iny I}} = \pm 0.25 \%$	в соответствии с выбранным для		$\gamma_{\rm MK} = \pm (\gamma_{\rm M} + \gamma_{\rm K})$
ТСМУ Метран-274Exia, -Exd, ТСПУ Метран-276Exia, -Exd		$\gamma_{ m A}\!\!=\pm0,\!5$ %		±0,05; ±0,1;	
Преобразователи температуры Метран-280, Метран-280-Ех (Регистр. № 23410-13): Метран-286, 286- Ех		γд= ±0,15 %			
Термопреобразователи с унифицированным выходным сигналом Метран-2700 (Регистр. № 38548-13): с НСХ 50М, 100М, Рt100, 100П	от -50 до +50 °C от -50 до +100 °C от 0 до +50 °C от 0 до +100 °C от 0 до +180 °C от -15 до +250 °C от 0 до +300 °C от 0 до +320 °C	$\gamma_{ extsf{ iny \pi}} = \pm 0.15 \% \ \gamma_{ extsf{ iny \pi}} = \pm 0.25 \%$	использования в системе типом контроллеров, столбец 2 таблицы 5	$\pm 0.15; \pm 0.2;$ $\pm 0.25; \pm 0.3;$ $\pm 0.35; \pm 0.5;$ ± 0.6	
Термоэлектрические преобразователи Rosemount 0185, HCX ТХА тип К (Регистр. № 56580-14), совместно с преобразователями измерительными Rosemount 644 (Регистр. № 63889-16)	от -40 до +1000 °C	$\Delta_{\text{Д}}$ = ±2,5 °C (в диапазоне от -40 до +375 °C) $\Delta_{\text{Д}}$ = ±(0,004 t +1,0) °C (в диапазоне от +375 до +1000 °C)			$\Delta_{\rm MK} = \pm \left(\Delta_{\rm M} + \frac{\gamma_{\rm K} \cdot D}{100}\right)$

продолжение таолицы 4							
Первичный измерительный	Диапазоны измере-	Характеристики погрешности ¹	Вторичная элект АСУ Г.	-	Характеристики погрешности ¹ ИК		
преобразователь (ПИП)	ний ИК	=			-		
преобразователь (пипт)	нии ик	ПИП dд, %; уд, %;	модули ввода	Характеристики	$d_{\mathrm{UK}},\%;\gamma_{\mathrm{UK}},\%;$		
		$\Delta_{\mathrm{Д}},{}^{\circ}\mathrm{C}$	аналоговых сигналов	погрешности 7к, %	$\Delta_{ m MK},{}^{\circ}{ m C}$		
7. ИК расхода на базе сужающ	их устройств (СУ) – ста	ндартных диафрагм по Г	ОСТ 8.586 (части 1, 2,	5), конических сопе	л по МИ 1995-89		
Датчики давления Метран-150,							
модели CD, CDR;							
преобразователи давления изме-							
рительные EJ*;	500000 3/						
преобразователи давления изме-	до 500000 м³/ч		в соответствии с	0.05 0.1			
рительные Sitrans P типа 7MF;	(по разности давле-		выбранным для ис-	$\pm 0.05; \pm 0.1;$	(D)		
преобразователи давления	ний на сужающем	$d_{n}=+2.0\%$	пользования в сис-	±0,15;±0,2;	$\delta_{\text{MK}} = \pm \left(\delta_{\text{M}} + \frac{\gamma_{\text{K}} \cdot D}{X} \right)$		
ST 3000.	устройстве с верхней	$egin{aligned} {\sf d}_{\! \mbox{\it I}} \! = \! \pm 2.0 \ {\sf w} \ {\sf d}_{\! \mbox{\it I}} \! = \! \pm 4.0 \ {\sf w} \end{aligned}$	теме типом кон-		'мк — (-д - Х)		
Те же ПИП с ИК избыточного	границей диапазона	и д— ± 1,0 70	троллеров,	$\pm 0,35;\pm 0,5;$			
давления по п. 1, атмосферного	от 0,1 до 6,3 кПа,		столбец 2 таблицы 5	±0,6			
давления по п. 4 и температуры	от 0,25 до 2,5 кПа)						
по п.п. 5-6 таблицы для приве-							
<u> </u>							
дения расхода к стандартным							
условиям 8. ИК расхода среды на базе инте	DEPORT HERE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPER	2 11211211 2020111121 20201	HIGHANIAN HAHARHAN TR	USAN D TON HUMOTO OF	AND HI DODONINOM MV		
избыточного давления по п. 1, атм	осферного давления по	п. 4 и температуры по п.: 		иведения расхода к ст	андартным условиям		
Расходомеры 3051SFA (Регистр.	7 00000 2/		в соответствии с	$\pm 0.05; \pm 0.1;$			
№ 46963-11), Метран 350	до 500000 м³/ч	d д= ±2,0 %	выбранным для ис-		γ_{κ} . D		
(Регистр. № 25407-05)			пользования в сис-	$\pm 0,25; \pm 0,3;$	$\delta_{\text{MK}} = \pm \left(\delta_{\text{M}} + \frac{\gamma_{\text{K}} \cdot D}{X} \right)$		
SDF/F (Регистр. № 44907-10)	до 339000 м³/ч	d _Д = ±2,0 %	теме типом кон-	$\pm 0,35; \pm 0,5;$	(1		
Метран-150RFA	до 500000 м³/ч	$d_{\rm II} = \pm 2.5 \%$	троллеров,	+0.6			
(Регистр. № 43124-09)			столбец 2 таблицы 5	·			
9. ИК расх	9. ИК расхода среды на базе интегральных расходомеров с использованием компактных диафрагм						
			в соответствии с	$\pm 0.05; \pm 0.1;$			
_			выбранным для ис-	, , , ,	$\gamma_v \cdot D$		
Расходомеры 3051SFC	до 228600 м³/ч	$\gamma_{ m A}\!\!=\pm2.0~\%$	пользования в сис-	$\pm 0,25; \pm 0,3;$	$\delta_{\text{MK}} = \pm \left(\delta_{\text{M}} + \frac{\gamma_{\text{K}} \cdot D}{X} \right)$		
(Регистр. № 50699-12)	до 220000 М / 1	1μ ⁻ ±2,0 /0	теме типом кон-	$\pm 0,25; \pm 0,5;$ $\pm 0,35; \pm 0,5;$	\ A /		
			троллеров,	+0.6			
			столбец 2 таблицы 5	±0,0			
·		·	·				

Первичный измерительный преобразователь (ПИП)	Диапазоны измерений ИК	Характеристики погрешности 1 ПИП $d_{\rm Д},\%;\gamma_{\rm Д},\%;$ $\Delta_{\rm Z},^{\circ}{\rm C}$	Вторичная электрическая часть АСУ ГАиСВ модули ввода Характеристики аналоговых сигналов погрешности 1 γ_K , %		Характеристики погрешности 1 ИК d _{иК} , %; $\gamma_{иK}$, %; Δ_{uK} , °C
10. ИК	концентраций (объемной	доли определяемого ко	омпонента) на базе газ	воанализатора	
Анализаторы кислорода XMO2 (Регистр. № 51349-12)	O ₂ в N ₂ : от 0 до 5 % O ₂ в N ₂ : от 0 до 10 % O ₂ в N ₂ : от 10-80 % до 10-100 %	$\gamma_{A}=\pm 5.0 \%$ $\gamma_{A}=\pm 5.0 \%$ $\gamma_{A}=\pm 3.0 \%$			
Газоанализаторы CGA 351 (Регистр. № 51454-12)	${ m O_2}$ в ${ m N_2}$: от 0 до 10 млн $^{-1}$ от 0 до 100 млн $^{-1}$	γ _Д = ±30 % γ _Д = ±6 %			$\gamma_{HK} = \pm (\gamma_{\text{A}} + \gamma_{\text{K}})$
Анализаторы кислорода газовые Охутаt 64 (Регистр. № 41714-09)	${ m O_2}$ в ${ m N_2}$: от 0 до 10 млн $^{-1}$ от 0 до 100 млн $^{-1}$ от 0 до 10 %	$\gamma_{A}=\pm 25 \%$ $\gamma_{A}=\pm 25 \%$ $\gamma_{A}=\pm 3,0 \%$	в соответствии с выбранным для ис-	±0,05; ±0,1; ±0,15;±0,2;	
Газоанализаторы ФЛЮОРИТ ЦМ (Регистр. № 49326-12)	${ m O_2}$ в ${ m N_2}$: от 1 до 100 млн $^{-1}$	d _Д = ±6 %	пользования в системе типом контроллеров,	±0,25; ±0,3; ±0,35; ±0,5;	$\delta_{\text{MK}} \!=\! \! \pm \! \left(\delta_{\text{M}} \! + \! \frac{\gamma_{\text{K}} \! \cdot \! D}{X} \right)$
Газоанализаторы Охутаt 6, Охутаt 61 (Регистр. № 24802-11)	O_2 в N_2 : от 0 до 5 % O_2 в N_2 : от 0 до 10 % O_2 в N_2 : от 0 до 100 %	$\gamma_{ extstyle eta} = \pm 4.0 ext{ (g) } \% \ \gamma_{ extstyle eta} = \pm 4.0 ext{ (g) } \% \ \gamma_{ extstyle eta} = \pm 2.0 ext{ (g) } \%$	столбец 2 таблицы 5	±0,6	$\gamma_{\rm MK} = \pm (\gamma_{\rm J} + \gamma_{\rm K})$
Газоанализаторы ГАММА-100 (Регистр. № 60152-15)	O ₂ в N ₂ : от 0 до 2 % O ₂ в N ₂ : от 0 до 5 % O ₂ в N ₂ : от 0 до 10 %	γ_{A} = ±4 % γ_{A} = ±2,5 %			тик — Стд Стк
Анализаторы влажности MOISTURE ANALYZERS мод. MIS1, MMS3, MMS35, MTS6, PM880, VeriDri (Регистр. № 51453-12)	Точка росы воздуха от -80 до +20 °C	$\Delta_{\text{Д}}$ = ±2 °C в диапазоне от -60 до +20 °C $\Delta_{\text{Д}}$ = ±3 °C в диапазоне от -80 до -60 °C			$\Delta_{\rm MK} \!=\! \pm \! \left(\Delta_{\rm J} \! + \! \frac{\gamma_{\rm K} \! \cdot \! D}{100} \right)$

Первичный измерительный	Диапазоны измере-	Характеристики погрешности ¹	Вторичная элект АСУ Г.		Характеристики погрешности ¹ ИК
преобразователь (ПИП)	ний ИК	ПИП $d_{\mathtt{Д}},\%;\gamma_{\mathtt{Д}},\%;\ \Delta_{\mathtt{J}},{}^{\circ}\mathrm{C}$	модули ввода аналоговых сигналов	Характеристики погрешности 1 γ_{K} , %	$d_{UK}, \%; \gamma_{UK}, \%; \ \Delta_{UK}, {}^{\circ}C$
Газоанализаторы Охутаt 6, Охутаt 61 (Регистр. № 24802-11)		γ _Д = ±2 %			
Датчики-газоанализаторы термомагнитные ДАМ (Регистр. № 24047-11)	${ m O_2}$ в воздухе	үд=±2,5 %	в соответствии с выбранным для ис-	±0,05; ±0,1;	24 - 1/24 - 124)
Анализаторы кислорода XMO2 (Регистр. № 51349-12)	от 0 до 30 %	$\gamma_{\text{д}}$ = ±5 % в диапазоне от 0 до10 %; $\gamma_{\text{д}}$ = ±3 % в диапазоне от св.10 до 30 %	пользования в системе типом контроллеров, столбец 2 таблицы 5	$\pm 0,15;\pm 0,2;$ $\pm 0,25;\pm 0,3;$ $\pm 0,35;\pm 0,5;$ $\pm 0,6$	$\gamma_{\rm MK} = \pm (\gamma_{\rm M} + \gamma_{\rm K})$
Измеритель влажности газов ИВГ-1/ 1-Щ (Регистр. № 70176-18)	Точка росы воздуха от -80 до 0 °C	$\Delta_{\rm A}$ = ±2 °C			$ \Delta_{\rm MK} = \pm \left(\Delta_{\rm J} + \frac{\gamma_{\rm K} \cdot D}{100} \right) $
	11. ИК вывода а	налоговых управляющ	их сигналов (ЦАП)		
-	выходные диапазоны от 0 до 20 мА от 0 до 21 мА от 0 до 22 мА от 4 до 20 мА от 0 до 10 В	-	в соответствии с выбранным для использования в системе типом контроллеров, столбец 4 таблицы 5	$\pm 0,04; \pm 0,05;$ $\pm 0,1; \pm 0,15;$ $\pm 0,2; \pm 0,3;$ $\pm 0,35; \pm 0,4; \pm 0,5$	$\gamma_{ m MK}=\pm\gamma_{ m K}$

Примечания

- D диапазон измерений в единицах измеряемой физической величины;
- d пределы допускаемых относительных погрешностей ИК ($d_{\text{ИК}}$), датчика ($d_{\text{д}}$);
- Δ пределы допускаемых абсолютных погрешностей ИК ($\Delta_{\text{ИК}}$), датчика ($\Delta_{\text{д}}$) или модуля контроллера(Δ_{K});
- Х измеренное значение параметра в единицах измеряемой физической величины.

 $^{1 \}gamma$ – пределы допускаемых приведенных погрешностей ИК ($\gamma_{\text{ИК}}$), датчика ($\gamma_{\text{д}}$) или модуля контроллера(γ_{K}), приведенных к нормирующему значению D;

Таблица 5 - Перечень модулей ввода/вывода аналоговых сигналов, используемых в составе контроллеров АСУ ГАиСВ

Типы контрол-	Модули контроллеров, используемые в АСУ ГАиСВ						
леров, используемые в АСУ ГАиСВ	для приема и преобразования сигналов от датчиков в диапазоне от 4(0) до 20 мА	для приема и преобразования сигналов от термопреобразо- вателей сопротивления	для вывода аналоговых сигналов управления				
1	2	3	4				
S7-300	6ES7 331-7KB0x-xxxx, SIPLUS 6AG1 331-7KB0x-xxxx, 6ES7 331-7KF0x-xxxx, SIPLUS 6AG1 331-7KF0x-xxxx (±0,5 %); 6ES7 331-7NF0x-xxxx (±0,05 %); 6ES7 331-7NF1x-xxxx (±0,05 %); 6ES7 331-7RD0x-xxxx (±0,1 %); 6ES7 331-1KF0x-xxxx (±0,3 %); 6ES7 331-7HF0x-xxxx (±0,2 %)	6ES7 331-1KF0x-xxxx (±1,0 °C); 6ES7 331-7PFxx-xxxx (±0,5 °C); 6ES7 331-7SF0x-xxxx (±0,2 °C)	6ES7 332-5HB0x-xxxx, 6ES7 332-5HD0x-xxxx, SIPLUS 6AG1 332-5HB0x-xxxx, 6ES7 332-5HF0x-xxxx (±0,5 %); 6ES7 332-7ND0x-xxxx (±0,04 %)				
S7-400	6ES7431-1KF1x-xxxx, 6ES7431-7QH0x-xxxx (±0,15 %); 6ES7431-7KF0x-xxxx (±0,17 %); 6ES7431-0HH0x-xxxx, 6AG1431-0HH0x-xxxx (±0,25 %)	6ES7431-1KF1x-xxxx (±0,2 °C) 6ES7431-7KF0x-xxxx (±0,5 °C), 6ES7431-7QH0x-xxxx (±0,2 °C)	6ES7432-1HF0x-xxxx, SIPLUS 6AG1432-1HF0x-xxxx (±0,5 %)				
S7-1200	6ES7231-4HAxx-xxxx (±0,3 %); 6ES7 231-4HDxx-xxxx, 6AG1 231-4HDxx-xxxx, 6ES7 231-4HFxx-xxxx, 6ES7 231-5NDxx-xxxx (±0,1 %); 6ES7 234-4HExx-xxxx, 6AG1 234-4HExx-xxxx (±0,3 %)	6ES7 231-5PAxx-xxxx (±0,5 °C); 6ES7 231-5PDxx-xxxx, 6AG1 231-5PDxx-xxxx, 6ES7 231-5PFxx-xxxx, 6AG1 231-5PFxx-xxxx (±0,2 °C)	6ES7 232-4HBxx-xxxx, 6AG1 232-4HB4HBxx-xxxx, 6ES7 232-4HDxx-xxxx, 6AG1232- 4HDxx-xxxx (±0,3 %)				
S7-1500	6ES7531-7NF**-*AB* (±0,2 %); 6ES7531-7KF**-*AB*, 6ES7531-7QD**-*AB*, 6ES7534-7QE**-*AB* (±0,1 %)	6ES7531-7KF**-*AB*; 6ES7531-7QD**-*AB*; 6ES7534-7QE**-*AB * (±0,7 °C)	6ES7532-5HD**-*AB*, 6ES7532-5HF**-*AB*, 6ES7532-5NB**-*AB*(±0,2 %)				

Прололжение таблины 5

1734-IE4C, 1734-IE8C, 1756-IF6CIS, 1756-IF6 (±0,1 %); 1756-IF8 (±0,15 %); 1756-IF8 (±0,1 %); 1769-IE4R-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1794-IF8 (±0,5 %); 1794-IF8 (±0,5 %); 1794-IF8 (±1,0°C) 1794-IF8 (±0,5 %); 1794-IF8 (±0,15 %); 1794-IF8 (±0,15 %); 1794-IF8 (±0,15 %); 1794-IF8 (±0,15 %); 1797-IE8 (±0,2 %); 1794-IF8 (±0,15 %); 1797-IE8 (±0,15 %); 1797-IF8 (±1,0°C) 1797-IF8 (±0,05 %); 1769-IF4 (±0,15 %); 1769-IF	1	2	3	4
1756-IF61 (±0,1 %); 1756-IF8, 1756-IF8H (±0,15 %); 1756-IF16 (±0,15 %); 1756-IF16 (±0,15 %); 1756-IF16 (±0,13 %); 1756-IF16 (±0,13 %); 1769-IF4, 1769-IF4 (±0,35 %); 1769-IF4 (±0,15 %); 1794-IF8H, 1794-IF8H, 1794-IF4HXT, 1797-IF8, 1797-IF8, 1797-IF8, 1797-IF8 (±0,15 %); 1769-IF4 (±0,1				1715-OF8I, 1756-OF4, 1756-OF8 (±0,05%);
1756-IF16 (±0,15 %); 1756-IF16H (±0,13 %); 1769-IR6, 1769-IR6, 1769-IF4 (±0,35 %); 1769-IF8 (±0,35 %); 1769-IF8 (±0,15 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-IE8XT (±0,2 %); 1756-IF8H, 1794-IE8XT (±0,2 %); 1794-IF8H, 1794-IE8H, 1794-IE8H, 1794-IE8H, 1794-IE8H, 1794-IE8H, 1769-IF4 (±0,35 %); 1769-IF4 (±0,15 %); 1769-IF4 (±0,2 %); 1769-IF4 (±0,2 %); 1769-IF4 (±0,35 %); 1769-IF4 (±0,15 %); 1769-IF4 (±0,15 %); 1769-IF6 (±0,27 %); 1734-IE2C, 1734-IE4C, 1734-IE8C, 1734-IE2C, 1734-IE4CH, 1794-IF8H, 1794-IE1C, 1794-IF8H, 1794-IE1C, 1794-IF8H, 1794-IE1C, 1794-IF8H, 1794-IE1C, 1794-IF4 (±0,15 %); 1756-IF6 (±0,15 %); 1769-IF4 (±0,15 %); 1769-IF4 (±0,15 %); 1769-IE8 (±0,35 %); 1769-IF4 (±0,15 %); 1769-IE8 (±0,25 %); 1769-IE8 (±0,55 %); 1769-IE8		, , , , , , , , , , , , , , , , , , , ,		
Logix PAC 1769-IF4, 1769-IF4I (±0,35 %); 1769-IF8 (±0,35 %); 1769-L24ER-QBFC1B, 1769-IF4XOF2 (±0,6 %); 1756-IF4XOF2F (±0,1 %); 1794-IF81H, 1794-IF81H, 1794-IF4IXT, 1794-IF81H, 1794-IF4IXT, 1797-IE8, 1797-IE8, 1797-IE8, 1799-IF4XOF2 (±0,5 %); 1769-IF4XOF2 (±0,5 %); 1769-OF4C, 1769-OF4C				
Logix PAC 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,1 %); 1769-L27ERM-QBFC1B (±0,1 %); 1769-IF4XOF2 (±0,6 %); 1756-IF4FXOF2F (±0,1 %); 1794-IF8H, 1794-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8XF (±0,1 %); 1794-IF8H, 1794-IE12, 1794-IF4IXT, 1797-IE8, 1797-IE8NF (±0,1 %); 1769-IF4 (±0,3 %); 1769-IF4 (±0,3 %); 1769-IF4 (±0,5 %); 1769-IF4 (±0,3 %); 1769-IF4 (±0,3 %); 1769-IF4 (±0,5 %); 1769-IF4 (±0,5 %); 1769-IF4 (±0,5 %); 1769-IF4 (±0,1 %)		` ' ''	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
1769-L27ERM-QBFC1B (±0,1 %); 1769-IF4XOF2 (±0,6 %); 1756-IF4FXOF2F (±0,1 %); 1794-IE81/T94-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8H, 1794-IE12, 1794-IE8H, 1797-IE8H, 1796-IF4 (±0,15 %); 1769-IF4 (±0,3 %); 1769-IF4 (±0,5 %) 1769-IF6 (±0,5 %) 1769-IF6 (±0,27 %); 1734-IE2C, 1734-IE3C, 1794-IF8H, 1794-IE12, 1794-IF8H, 1794-IF8H, 1794-IE12, 1794-IF8H, 1794-IF8H, 1794-IE12, 1794-IF8H, 1794-IF8		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	,	
1769-IF4XOF2 (±0,6 %); 1756-IF4FXOF2F (±0,1 %); 1794-IE8X1794-IE8X17 (±0,2 %); 1794-IE8H, 1794-IE8X1794-IE8XT (±0,2 %); 1794-IE8H, 1794-IE8H, 1797-IE8N (±0,1 %)	Logix PAC	,	,	
$ \begin{array}{c} 1794\text{-IE8/1794-IE8XT} (\pm 0, 2 \%); 1794\text{-IE8H}, \\ 1794\text{-IF8IH}, 1794\text{-IE12}, 1794\text{-IF4I/1794-IF4IXT}, \\ 1797\text{-IE8}, 1797\text{-IE8H}, 1797\text{-IE8NF} (\pm 0, 1 \%) \\ \\ 1746\text{-NI8} (\pm 0, 0.5 \%); 1746\text{-NI16I} (\pm 0, 1.5 \%); \\ 1769\text{-IF2} (\pm 0, 3 \%); 1769\text{-IF4}, 1769\text{-IF4I}, \\ 1769\text{-IF8} (\pm 0, 35 \%); 1769\text{-IF4}, 1769\text{-IF4I}, \\ 1794\text{-IF8IH}, 1794\text{-IE12}, 1794\text{-IE8H}, 1794\text{-IE8H}, 1794\text{-IE8H}, 1794\text{-IE8H}, 1794\text{-IE8H}, 1794\text{-IE8H}, 1794\text{-IE74IXT} (\pm 0, 1 \%); \\ 1734\text{-IE4S} (\pm 0, 6 \%); 1756\text{-IF8}, 1756\text{-IF8}, 1756\text{-IF8}, 1756\text{-IF8}, 1769\text{-IF4}, 1769-IF$			1794-IR8/1794-IR8XT (± 0,5 °C);	
1794-IF8IH, 1794-IE12, 1794-IF4I/1794-IF4IXT, 1797-IE8, 1797-IE8H, 1797-IE8NF (±0,1 %)		` ' ''	1794-IRT8/1794-IRT8XT,	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
$PLC & 1797-IE8, 1797-IE8H, 1797-IE8NF (\pm 0, 1 \%) \\ PLC & 1746-NI8 (\pm 0, 05 \%); 1746-NI16I (\pm 0, 15 \%); \\ 1769-IF8 (\pm 0, 35 \%); 1769-IF4I, 1769-IF4I, 1769-IF8 (\pm 0, 35 \%); 1769-IF16C (\pm 0, 5 \%) \\ & 1715-IF16 (\pm 0, 27 \%); 1734-IE2C, 1734-IE4C, 1734-IE8C, 1734sc-IE2CH, 1734sc-IE4CH, 1756-IF6CIS, 1756-IF6I, 1756-IF8I, 1794-IE8H, 1794-IE12, 1794-IF8IH, 1794-IE12, 1794-IF8IH, 1794-IF1XT (\pm 0, 1 \%); 1734-IE4S (\pm 0, 6 \%); 1756-IF8 (\pm 0, 15 \%); 1769-IF4 (\pm 0, 15 \%)$		` ' ''	$1797\text{-IRT8} (\pm 1,0^{\circ}\text{C})$	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
PLC $ \begin{array}{c} 1746-NI8 (\pm 0,05 \%); \ 1746-NI16I (\pm 0,15 \%); \\ 1762-IF2 (\pm 0,3 \%); \ 1769-IF4, \ 1769-IF4I, \\ 1769-IF8 (\pm 0,35 \%); \ 1769-IF16C (\pm 0,5 \%) \\ \\ 1715-IF16 (\pm 0,27 \%); \ 1734-IE2C, \ 1734-IE4C, \\ 1734-IE8C, \ 1734sc-IE2CH, \ 1734sc-IE4CH, \\ 1756-IF6IS, \ 1756-IF6I, \ 1756-IF8I, \ 1794-IE8H, \\ 1794-IF8IH, \ 1794-IE12, \\ 1794-IF8IH, \ 1794-IF4XT (\pm 0,1 \%); \\ 1756-IF8IH, \ 1756-IF8, \ 1756-IF8, \ 1756-IF8H, \\ 1756-IF8IH, \ 1756-IF16 (\pm 0,15 \%); \\ 1769-IF26 (\pm 0,15 \%); \\ 1769-IF27 (\pm 0,15 \%); \\ 1756-IF16 (\pm 0,15 \%); \\ 1769-IF27 (\pm 0,15 \%); \\ 1756-IF16 (\pm 0,15 \%); \\ 1769-IF27 (\pm 0,15 \%); \\ 1756-IF16 (\pm 0,15 \%); \\ 1769-IF27 (\pm 0,15 \%); \\ 1769-IF20 (\pm 0,$, ,		,
PLC 1746-NI8 (±0,05 %); 1746-NI161 (±0,15 %); 1746-NR4, 1746-NR8 (±0,5 °C); 1769-IF2 (±0,3 %); 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %) 1762-IR4, 1769-IR6 (±0,5 °C) 1762-IR4, 1769-IR6 (±0,5 °C) 1769-OF4CI, 1769-OF2C, 1769-OF2C, 1769-OF4CI, 1769-OF8C (±0,35 %) 1769-IF16C (±0,15 %); 1734-IE8C, 1734-IE8C, 1734-IE8H, 1794-IE12, 1794-IF4I/1794-IF4IXT (±0,1 %); 1734-IE4S (±0,6 %); 1756-IF8, 1756-IF8H, 1756-IF8I (±0,1 %); 1756-IF16H (±0,13 %); 1769-IF4 (±0,15 %); 1769-IF4ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-IF4XOF2 (±0,5 %); 1769-IF4XOF2		1797-IE8, 1797-IE8H, 1797-IE8NF (±0,1 %)		
PLC 1762-IF2 (±0,3 %); 1769-IF4I, 1769-IF4I, 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %) 1715-IF16 (±0,27 %); 1734-IE2C, 1734-IE4C, 1734-IE8C, 1734-IE8C, 1734-IE4CH, 1756-IF6CIS, 1756-IF6I, 1756-IF8I, 1794-IE8H, 1794-IE12, 1794-IF4I/1794-IF4IXT (±0,1 %); 1756-IF8I (±0,1 %); 1756-IF8IH, 1756-IF8IH, 1756-IF8H, 1756-IF8IH, 1756-IF8H, 1756-IF8IH, 1756-IF16 (±0,15 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1769-IF4XOF2 (±0,5 %		1746-NI8 (+0 05 %): 1746-NI16I (+0 15 %):	1746-NR4. 1746-NR8	, , , , , , , , , , , , , , , , , , , ,
1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %) 1762-IR4, 1769-IR6 (±0,5 °C) 1715-IF16 (±0,27 %); 1734-IE2C, 1734-IE4C, 1734-IE8C, 1734-Se-IE2CH, 1734sc-IE4CH, 1756-IF6CIS, 1756-IF6I, 1756-IF8I, 1794-IE8H, 1794-IE12, 1794-IF4I/1794-IF4IXT (±0,1 %); 1734-IE4S (±0,6 %); 1756-IF8, 1756-IF8H, 1756-IF8H, 1756-IF16 (±0,15 %); 1756-IF16H (±0,13 %); 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1794-IR8/1794-IR8XT, 1769-IF4XOF2 (±0,5 %); 1769-IF4XOF	PLC	1762-IF2 (±0,3 %); 1769-IF4, 1769-IF4I,	, · · · · · · · · · · · · · · · · · · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1715-IF16 (±0,27 %); 1734-IE2C, 1734-IE4C, 1734-IE8C, 1734-Se-IE2CH, 1734-Se-IE4CH, 1756-IF6CIS, 1756-IF6I, 1756-IF8I, 1794-IE8H, 1794-IE8H, 1794-IF4I/1794-IF4IXT (±0,1 %); 1794-IF4I/1794-IF4IXT (±0,1 %); 1756-IR12 (±0,2 %, ±0,5 %); 1756-IR6I (±0,1 %); 1756-OF8I (±0,3 %); 1756-OF8I (±0,3 %); 1756-OF8I (±0,1 %); 1769-IF8 (±0,35 %); 1769-IF4 (±0,5 %); 1769-IF4 (±0,15 %); 1769-IF4 (±0,1			` ' ' '	1762-IF2OF2 (±0,5 %); 1769-OF2, 1769-OF4,
$ \begin{array}{c} 1734\text{-IE8C}, 1734\text{sc-IE2CH}, 1734\text{sc-IE4CH}, \\ 1756\text{-IF6CIS}, 1756\text{-IF6I}, 1756\text{-IF8I}, 1794\text{-IE8H}, \\ 1794\text{-IF4I/1794-IF4IXT} (\pm 0,1 \%); \\ 1734\text{-IE4S} (\pm 0,6 \%); 1756\text{-IF8}, 1756\text{-IF8H}, \\ 1756\text{-IF16H} (\pm 0,15 \%); \\ 1756\text{-IF16H} (\pm 0,13 \%); 1769\text{-IF4}, 1769\text{-IF4I}, \\ 1769\text{-L24ER-QBFC1B}, \\ 1769\text{-L24ER-QBFC1B}, \\ 1769\text{-L27ERM-QBFC1B} (\pm 0,25 \%); \\ 1769\text{-L27ERM-QBFC1B} (\pm 0,5 \%); \\ 1769\text{-L27ERM-QBFC1B}, \\ 1769\text{-L27ERM-QBFC1B}, \\ 1769\text{-L27ERM-QBFC1B}, \\ 1769\text{-L27ERM-QBFC1B}, \\ 1769\text{-IR6} (\pm 0,5 \%); \\ 1794\text{-IR78/1794\text{-IR78XT}} \end{array} $		` ' '' '	1702 IK4, 1707 IKO (±0,5 °C)	1769-OF4CI, 1769-OF8C (±0,35 %)
$ \begin{array}{c} 1756\text{-}IF6CIS, 1756\text{-}IF6I, 1756\text{-}IF8I, 1794\text{-}IE8H,} \\ 1794\text{-}IF8IH, 1794\text{-}IE12,} \\ 1794\text{-}IF4I/1794\text{-}IF4IXT (\pm 0,1 \%);} \\ 1734\text{-}IE4S (\pm 0,6 \%); 1756\text{-}IF8, 1756\text{-}IF8H,} \\ 1756\text{-}IF8IH, 1756\text{-}IF16 (\pm 0,15 \%);} \\ 1756\text{-}IF16H (\pm 0,13 \%); 1769\text{-}IF4, 1769\text{-}IF4I,} \\ 1769\text{-}L24ER\text{-}QBFC1B,} \\ 1769\text{-}L24ER\text{-}QBFC1B,} \\ 1769\text{-}L27ERM\text{-}QBFC1B (\pm 0,25 \%);} \\ 1769\text{-}L27ERM\text{-}QBFC1B (\pm 0,25 \%);} \\ 1769\text{-}L27ERM\text{-}QBFC1B (\pm 0,5 °C);} \\ 1794\text{-}IR78/1794\text{-}IR78XT,} \\ 1794$				1717 0001 (10 40) 1724 0026
1794-IF8IH, 1794-IE12, 1794-IF4I/1794-IF4IXT (±0,1 %); 1734-IE4S (±0,6 %); 1756-IF8, 1756-IF8H, 1756-IF16H (±0,13 %); 1769-IF4, 1769-IF4I, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1769-IF8 (±0,5 °C); 1794-IF8 (±0,5 °C);	Logix D			· //
1794-IF4I/1794-IF4IXT (±0,1 %); 1734-IE4S (±0,6 %); 1756-IF8, 1756-IF8H, 1756-IF16H (±0,15 %); 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1769-L27ERM-QBFC1B (±0,25 %); 1769-IF4/IF18/IF194-IR78/IF18/IF18/IF18/IF18/IF18/IF18/IF18/IF1		, , , , , , , , , , , , , , , , , , , ,	1734-IR2; 1756-IR6I,	* * * * * * * * * * * * * * * * * * * *
1734-IE4S (±0,6 %); 1756-IF8, 1756-IF8H, 1756-IF8H, 1756-IF8IH, 1756-IF16 (±0,15 %); 1756-IF16H (±0,13 %); 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-IF8H, 1769-IF9H,		i '	1756-IRT8I (±0,1 %);	
Logix D 1756-IF8IH, 1756-IF16 (±0,15 %); 1756-IF16H (±0,13 %); 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,05 °C); 1794-IR8/1794-IR8XT, 1769-IR6 (±0,5 °C); 1794-IR78/1794-IR78XT 1769-IF4XOF2 (±0,5 %);		` ' ' '	1756 -IR12 ($\pm 0,2\%$, $\pm 0,5\%$);	
Logix D 1756-IF16H (±0,13 %); 1769-IF4, 1769-IF4I, 1769-IF4I, 1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L27ERM-QBFC1B (±0,9 °C); 1794-IR8/1794-IR8XT, 1769-L27ERM-QBFC1B, 1769-L27ERM-QBFC1B, 1769-IR6 (±0,5 °C); 1794-IR78/1794-IR78XT 1756-OF8IH (±0,15 %); 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-IR6 (±0,5 °C); 1794-IR78/1794-IR78XT		` ' ''	1756-IR6I (±0,1 %);	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
1769-IF8 (±0,35 %); 1769-IF16C (±0,5 %); 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1769-IR8/1794-IR78/T, 1769-IR78/1794-IR78/T, 1769-L24ER-QBFC1B, 1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B, 1769-IR78/1794-IR78/T, 1769-IR78/T, 1		1756-IF16H (±0,13 %); 1769-IF4, 1769-IF4I,	1769-L27ERM-QBFC1B (±0,9 °C); 1794-IR8/1794-IR8XT,	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
1769-L24ER-QBFC1B, 1769-L27ERM-QBFC1B (±0,25 %); 1769-L27ERM-QBFC1B (±0,25 %); 1794-IR78/1794-IR78XT, 1769-IR6 (±0,5 °C); 1794-IR78/1794-IR78XT, 1769-IR78/1794-IR78XT, 1769-IR78/1794-IR78XT, 1769-IR78/1794-IR78XT,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1769-L27ERM-QBFC1B (±0,25 %); 1769-IR6 (±0,5 °C); 1769-IF4XOF2 (±0,5 %);				
		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
1707_IPTX (+1 1) °C'\		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		1769sc-IF4IH, 1769-OF2, 1769-OF4,
1794-IE8/1794-IE8XT (±0,2 %); 1797-IE8, 1769-OF4CI, 17		` ' ' ' '		*
1797-IE8H, 1797-IE8NF (±0,1 %); 1769-OF4CI (±0,35 %)		` ' ' ' '		1/09-UF4C1 (±0,55 %)
5069-OF4, 5069-OF8 (±0,5 %) Примечания	Питерическа	J009-0F4, J009-0F8 (±0,3 %)		

1 В скобках приведены пределы допускаемой погрешности модулей.

2 Примечание к таблицам 1-5:

Модули аналогового ввода 1769-IF16C, 1769-IF8 измерительно-вычислительного и управляющего комплекса Logix D, Logix PAC (фирма «Rockwell Automation Allen-Bradley»), с пределами допускаемой приведенной основной погрешности ± 0.5 % и ± 0.35 % соответственно, допускается применять в системах с требованиями к пределам основной приведенной погрешности измерения параметров АСУ ТП (без учета погрешности датчиков) не более ± 0.2 % (при температуре окружающего воздуха от ± 1.5 до ± 2.5 °C, относительной влажности от 30 до 80 %, атмосферном давлении от 84 до 107 кПа) по результатам проведенных метрологических испытаний и определения метрологических и технических характеристик ИК.

Таблица 6 - Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	220^{+22}_{-33}
- частота переменного тока, Гц	50±1
Условия эксплуатации для ПИП:	
- температура окружающей среды для сужающих устройств, °C	от +5 до +50
- температура окружающей среды для ПИП, кроме средств	
газоаналитического контроля, °С	от +5 до +50
- относительная влажность, %, не более	80
- атмосферное давление, кПа	от 84 до 107
Условия эксплуатации для модулей универсальных промышленных	
контроллеров и средств газоаналитического контроля:	
- температура окружающей среды, °С	от +18 до +25
- относительная влажность, %	от 45 до 75
- атмосферное давление, кПа	от 84 до 107

Знак утверждения типа

наносится на титульные листы руководства по эксплуатации и паспорта типографским способом.

Комплектность средств измерений

Таблица 7 - Комплектность средства измерений

тиолици / помиментиеть средстви измерении					
Наименование	Обозначение	Количество			
Система автоматизированного контроля и управления установок получения газообразного азота и сухого воздуха (АСУ ГАиСВ) в соответствии с проектом	-	1 шт.			
ПО верхнего уровня (SCADA-программы)		1 шт.			
Комплект ЗИП	-	1 шт.			
Руководство по эксплуатации АСУ ГАиСВ	2082 364225 XXXX XX X PЭ-1 2082 364225 XXXX XX X PЭ-2	1 экз.			
Паспорт	2082 364225 XXXX XX X ПС-1 2082 364225 XXXX XX X ПС-2	1 экз.			
Методика поверки	3641-024-05747985-2019 МП	1 экз.			

Поверка

осуществляется по документу 3641-024-05747985-2019 МП «Системы автоматизированного контроля и управления установок получения газообразного азота и сухого воздуха (АСУ ГАиСВ). Методика поверки», утвержденному ФГУП «ВНИИМС» 14.10.2019 г.

Основные средства поверки:

- магазин сопротивлений Р4831, регистрационный № 48930-12;
- универсальный калибратор Н4-7, регистрационный № 22125-01;
- калибратор-измеритель унифицированных сигналов эталонный ИКСУ-260, регистрашионный № 35062-07.

Поверка первичных измерительных преобразователей (датчиков) осуществляется с помощью средств поверки, указанных в методиках поверки на соответствующие датчики.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

Знак поверки в виде оттиска клейма и/или наклейки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системам автоматизированного контроля и управления установок получения газообразного азота и сухого воздуха (АСУ ГАиСВ)

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ТУ 3641-024-05747985-2019 Система автоматизированного контроля и управления установок получения газообразного азота и сухого воздуха. Технические условия

Изготовитель

Публичное акционерное общество криогенного машиностроения (ПАО «Криогенмаш»)

ИНН 5001000066

Адрес: 143907, Московская обл., г. Балашиха, проспект Ленина, д. 67

Телефон: +7 (495) 505-93-33 Факс: +7 (495) 521-57-22

Web-сайт: <u>www.cryogenmash.ru</u> E-mail: root@cryogenmash.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п.

«____»____2019 г.