Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ
Главный метролог
АО «ТриСТ»
АО А.Н. Новиков
«30» октября 2019 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Вольтметры АКИП-2401, АКИП-2402, АКИП-2404, АКИП-2405

МЕТОДИКА ПОВЕРКИ ПР-30-2019МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок вольтметров АКИП-2401, АКИП-2402, АКИП-2404, АКИП-2405, изготовленных Shijiazhuang Suin Instruments CO., LTD., Китай.

Вольтметры АКИП-2401, АКИП-2402, АКИП-2404, АКИП-2405 (далее по тексту – вольтметры) предназначены для измерения напряжения переменного тока.

Интервал между поверками 1 год.

Периодическая поверка вольтметров в случае их использования для измерений на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца вольтметров, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке вольтметров.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 - Операции поверки

	Номер пункта	Проведение операции при		
Наименование операции	методики поверки	первичной поверке	периодической поверке	
1	2	3	4	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Проверка идентификационных данных программного обеспечения	7.3	да	нет	
4 Определение абсолютной погрешности измерения напряжения	7.4	да	да	

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке. Эталоны единиц величин, используемые при поверке СИ, должны быть аттестованы.

Таблица 2 – Средства поверки

Номер пункта МП	Тип средства поверки
7.3	Калибратор переменного напряжения B1-29. Диапазон выходных напряжений от 3 мкВ до 3 В, диапазон частот от 10 Γ ц до 100 М Γ ц, пределы основной погрешности выходного напряжения от $\pm 0,066$ до ± 2 %. Калибратор многофункциональный Fluke 5522A. Диапазон частот воспроизведения напряжения переменного тока от 0 до 1000 В, диапазон частот от 10 Γ ц до 100 к Γ ц, пределы основной погрешности воспроизведения напряжения от $\pm 0,0115$ до $\pm 0,025$ %

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки	
Температура	от 0 до +50 °C.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A	
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511	
Влажность	от 10 до 100 %	±2 %	Цифровой термометр- гигрометр Fluke 1620A	
Напряжение питающей сети	от 50 до 480 В	±0,2 %	Прибор измерительный универсальный парамет-	
Частота питающей сети	от 45 до 66 Гц	±1 %	ров электрической сети DMG 800	

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- атмосферное давление, кПаот 84 до 106;

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;
- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации и выдержаны во включенном состоянии не менее 30 минут.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

6.5 Включить вольтметр и средства поверки, осуществить предварительный прогрев приборов для установления их рабочего режима в течение 30 минут.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого вольтметра следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый вольтметр бракуется и подлежит ремонту.

7.2 Опробование

Опробование вольтметров проводить путем проверки их на функционирование в соответствии с руководством по эксплуатации.

Подготовить вольтметр к работе в соответствии с руководством по эксплуатации.

Включить вольтметр и проверить отсутствие сообщений о неисправности в процессе загрузки.

Результат опробования считать положительным, если на дисплее отсутствуют сообщения об ошибках, вольтметр функционирует согласно руководству по эксплуатации.

При отрицательном результате опробования вольтметр бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения

Проверка идентификационных данных программного обеспечения вольтметров осуществляется путем получения информации о версии программного обеспечения (ПО).

Для получения информации о версии ПО – подключить вольтметр к ПК при помощи рекомендованного изготовителем интерфейсного кабеля. Вольтметр перевести в режим дистанционного управления согласно инструкции по эксплуатации. На ПК должна быть установлена программа доступа к интерфейсу RS232 (для АКИП-2401, АКИП-2402) или USB (для АКИП-2404, АКИП-2405). Через программу, в командной строке задать команду-запрос для вывода в окне программы информации о версии ПО:

*IDN?\n – для АКИП-2401, АКИП-2402;

:SYST:VERS? \n – для АКИП-2404, АКИП-2405.

Результат считается положительным, если номер версии программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Software
Номер версии (идентификационный номер ПО)	
АКИП-2401, АКИП-2402	V.100 и выше
АКИП-2404, АКИП-2405	V2019.1.0 и выше

7.4 Определение абсолютной погрешности измерения напряжения проводить при помощи калибраторов B1-29 и Fluke 5522A методом прямых измерений.

Собрать схему на рисунке 1.

Для определения погрешности измерения напряжения в диапазоне от $10~\mathrm{B}$ до $300~\mathrm{B}$ – использовать калибратор Fluke 5522A.

Рисунок 1

Подключить калибратор ко входу канала 1 (CH1) вольтметра согласно руководствам по эксплуатации на приборы.

Включить вольтметр и калибратор. Для калибратора B1-29 — использовать проходную нагрузку 50 Ом из его комплекта. При использовании калибратора Fluke 5522A - установить синусоидальную форму сигнала. Напряжение и частоту сигнала устанавливать согласно таблице 5. Верхний предел диапазона измерений вольтметра устанавливать в зависимости от уровня сигнала с калибратора согласно таблицы 5. Провести измерения напряжения вольтметром. Данные записать в таблицу 5.

Повторить измерения для второго канала вольтметра (СН2).

Таблица 5 - Устанавливаемые параметры

Верхние пределы диапазонов измерений	установленное значение напря- жения с выхода калибратора, Uд	Частота тест-сигнала ¹⁾²⁾	Показания вольтметра, Иизм
3 мВ	2,7 мВ	20 Гц, 20 кГц, 1 МГц, 3 МГц, 5 МГц, 6 МГц	
30 мВ	27 мВ	20 Гц, 20 кГц, 1 МГц, 3 МГц, 5 МГц, 6 МГц	
300 мВ	270 мВ	20 Гц, 20 кГц, 1 МГц, 3 МГц, 5 МГц, 6 МГц	
3 B	2,7 B	20 Гц, 20 кГц, 1 МГц, 3 МГц, 5 МГц, 6 МГц	
30 B	27 B	20 Гц, 20 кГц	
300 B	270 B	45 Гц, 20 кГц	

Примечание

- 1) частота тест-сигнала 5 МГц используется только для модификаций АКИП-2402, АКИП-2405
 - 2) частота тест-сигнала 6 МГц используется только для модификации АКИП-2405

Рассчитать абсолютную погрешность измерения напряжения по формуле:

$$\Delta U = U$$
изм $- U$ д,

где Uизм – показания поверяемого вольтметра, В Uд – установленное значение напряжения на калибраторе, В

Результаты поверки считать положительными, если значения абсолютной погрешности измерения напряжения не превышают допускаемых пределов, приведенных в таблице 6.

Таблица 6 - Допускаемые значения абсолютной погрешности измерения напряжения Δ Uдоп

Измеряемое	Частота измеряемого сигнала					
значение напряжения	20 Гц, 45 Гц	20 кГц	1 МГц	3 МГц	5 МГц	6 МГц
2,7 мВ	±0,0915 мВ	±0,0555 мВ	±0,084 мВ	±0,168 мВ	±0,255 мВ	±0,255 мВ
27 мВ	±0,915 мВ	±0,555 мВ	±0,84 мВ	±1,68 мВ	±2,55 мВ	±2,55 мВ
270 мВ	±9,15 мВ	±5,55 мВ	±8,4 мВ	±16,8 мВ	±25,5 мВ	±25,5 мВ
2,7 B	±0,0915 B	±0,0555 B	±0,084 B	±0,168 B	±0,255 B	±0,255 B
27 B	±0,915 B	±0,555 B	-	-	-	-
270 B	±9,15 B	±5,55 B	-	-	-	-

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки вольтметров оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

8.2 При отрицательных результатах поверки приборы не допускаются к дальнейшему применению. На вольтметр выдается извещение о непригодности.

Начальник отдела испытаний и сертификации

Сле С.А. Корнеев