ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» Государственный научный метрологический центр ФГУП «ВНИИР»

Заместитель директора по развитию развитию директора по развитию

ИНСТРУКЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Резервуары стальные вертикальные цилиндрические теплоизолированные PBC-1000

МП 1029-7-2019

Начальник НИО-7

Кондаков А. В.

Тел. (843) 272-62-75; 272-54-55

Предисловие

1 РАЗРАБОТАНА

Федеральным государственным унитарным предприятием

Всероссийским научно-исследовательским институтом расходометрии

Государственным научным метрологическим центром

(ФГУП «ВНИИР»)

ИСПОЛНИТЕЛИ:

А. В. Кондаков, В. М. Мигранов

2 УТВЕРЖДЕНА

ФГУП «ВНИИР»

09 октября 2019 г.

3 ВВЕДЕНА ВПЕРВЫЕ

ЛИСТОВ: 38

Настоящий нормативный документ не может быть полностью или частично воспроизведен, тиражирован и (или) распространен без разрешения ФГУП «ВНИИР»

Адрес: 420088, г. Казань, ул. 2-я Азинская, 7а Тел/факс +7(843)272-61-26; +7(843)272-62-75

E-mail: nio7@vniir.org

Содержание

	Стр.
1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	2
4 Метод поверки	3
5 Технические требования	3
5.1 Требования к погрешности измерений параметров резервуара	3
5.2 Требования по применению рабочих эталонов и вспомогательных средств поверки	3
6 Требования к организации проведения поверки	4
7 Требования к квалификации поверителей и требования безопасности	4
8 Условия поверки	5
9 Подготовка к поверке	5
10 Проведение поверки резервуара	6
10.1 Внешний осмотр	6
10.2 Измерения базовой высоты резервуара	7
10.3 Определение внутренних диаметров поясов резервуара	7
10.4 Измерения высот поясов резервуара	8
10.5 Определение параметров «мертвой» полости резервуара	
10.5.1 Измерение объема неровностей днища	9
10.5.2 Измерение высоты «мертвой» полости	10
10.5.3 Измерение координаты точки касания днища грузом рулетки	10
10.6 Определение объемов внутренних деталей	10
11 Обработка результатов измерений и составление градуировочной таблицы	
11.1 Обработка результатов измерений	
11.2 Составление градуировочной таблицы резервуара	
12 Оформление результатов поверки	
Приложение А	
Приложение Б	
Приложение В	
Приложение Г	
Приложение Д	
Приложение Е	
Приложение Ж	
БИБЛИОГРАФИЯ	38

Государственная система обеспечения единства измерений

Резервуары стальные вертикальные цилиндрические теплоизолированные PBC-1000. Методика поверки МП 1029-7-2019

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция распространяется на резервуары стальные вертикальные цилиндрические теплоизолированные (далее – резервуары) номинальной вместимостью 1000 м³ (РВС-1000) с заводскими номерами 27, 29, 166-16-1000 расположенные на территории ООО «НГК «Горный» приемо-сдаточного пункта нефти «Черпаю» по адресу: Архангельская область, Ненецкий автономный округ, Заполярный район, Хоседаю-Неруюское месторождение, предназначенных для измерения объема нефти и нефтепродуктов, а также для их приема, хранения и отпуска при выполнении государственных учетных операций с нефтью и нефтепродуктами и устанавливает методику геометрическим методом его первичной, периодической и внеочередной поверок.

Межповерочный интервал составляет не более 5 лет.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей инструкции использованы ссылки на следующие стандарты:

ГОСТ 12.0.004—2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения;

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны;

ГОСТ 12.4.010—75 Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия;

ГОСТ 12.4.087—84 Система стандартов безопасности труда. Строительство. Каски строительные. Технические условия;

ГОСТ 12.4.137—2001 Обувь специальная с верхом из кожи для защиты от нефти, нефтепродуктов, кислот, щелочей, нетоксичной и взрывоопасной пыли. Технические условия;

ГОСТ 400—80 Термометры стеклянные для испытаний нефтепродуктов. Технические условия;

ГОСТ 427—75 Линейки измерительные металлические. Технические условия;

ГОСТ Р 12.4.310—2016 Система стандартов безопасности труда. Одежда специальная для защиты работающих от воздействия нефти, нефтепродуктов. Технические требования;

ГОСТ 28498—90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний;

ГОСТ 30852.0—2002 Электрооборудование взрывозащищенное. Часть 0. Общие требования;

ГОСТ 30852.9—2002 Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон;

ГОСТ 30852.11—2002 Электрооборудование взрывозащищенное. Часть 12. Классификация смесей газов и паров с воздухом по безопасным экспериментальным зазорам и минимальным воспламеняющим токам.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей инструкции применяют следующие термины с соответствующими определениями:

- 3.1 резервуар стальной вертикальный цилиндрический теплоизолированный: Стационарная мера вместимости, наружная поверхность которой покрыта слоем теплоизоляции, с индивидуальной градуировочной таблицей, предназначенная для приема, хранения и отпуска, измерения объема и массы нефти и нефтепродуктов совместно со средствами измерений уровня, плотности и температуры.
- 3.2 **градуировочная таблица:** Зависимость вместимости от уровня наполнения резервуара при нормированном значении температуры, равной 20 °C.

Таблицу прилагают к свидетельству о поверке резервуара и применяют для определения объема нефти и нефтепродукта в нем.

- 3.3 **градуировка:** Операция поверки по установлению зависимости вместимости резервуара от уровня его наполнения, с целью составления градуировочной таблицы.
- 3.4 **вместительность резервуара:** Внутренний объем резервуара с учетом объема внутренних деталей, который может быть наполнен нефтью и нефтепродуктом до определенного уровня.
- 3.5 **номинальная вместимость резервуара:** Вместимость резервуара, соответствующая предельному уровню наполнения его, установленная нормативным документом для конкретного типа резервуара.
- 3.6 **действительная** (фактическая) полная вместимость резервуара: Вместимость резервуара, соответствующая предельному уровню его наполнения, установленная при его поверке.
- 3.7 **посантиметровая вместимость резервуара:** Вместимость резервуара, соответствующая уровню налитых в него доз жидкости, приходящихся на 1 см высоты наполнения.
- 3.8 **коэффициент вместимости:** Вместимость, приходящаяся на 1 мм высоты наполнения.
- 3.9 точка касания днища грузом рулетки: Точка на днище резервуара, которой касается груз измерительной рулетки при измерении базовой высоты резервуара и уровня нефти и нефтепродукта в резервуаре.
- 3.10 **базовая высота резервуара:** Расстояние по вертикале от точки касания днища грузом рулетки до верхнего края измерительного люка или до риски направляющей планки измерительного люка (при наличии)
- 3.11 **предельный уровень:** Предельный уровень определения посантиметровой вместимости резервуара при его поверке, соответствующий суммарной высоте нижней части резервуара и стенки резервуара

3.12 **геометрический метод поверки:** Метод поверки, заключающийся в определении вместимости резервуара по результатам измерений его геометрических параметров.

4 МЕТОД ПОВЕРКИ

Поверку резервуара проводят геометрическим методом.

- 4.1 При поверке резервуара вместимость первого пояса резервуара определяют по результатам измерений внутреннего диаметра с применением электронного тахеометра и высоты первого пояса.
- 4.1 Вместимость вышестоящих поясов определяют по результатам измерений внутренних радиусов и высот поясов.

5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

5.1 Требования к погрешности измерений параметров резервуара

5.1.1 Пределы допускаемой погрешности измерений параметров резервуара приведены в таблице 1.

Таблица 1

Наименование измеряемого параметра	Пределы допустимой погрешности измерений параметров резервуара
Диаметр резервуара, мм	± 3
Высота пояса, мм	±3
Измерение расстояний, мм	± 3
Температура стенки резервуара, °С	± 2
Объем внутренних деталей, м³	± (0,025-0,25)

5.1.2 При соблюдении указанных в таблице 1 пределов допускаемой погрешности измерений, относительная погрешность определения вместимости (градуировочной таблицы) резервуаров не превышает: ± 0,10 %.

5.2 Требования по применению рабочих эталонов и вспомогательных средств поверки

- 5.2.1 При поверке резервуара применяют следующие основные и вспомогательные средства поверки:
- 5.2.1.1 Рулетку измерительную 2-го класса точности с диапазоном измерений от 0 до 20 м по ГОСТ 7502.
- 5.2.1.2 Рулетку измерительную 2-го класса точности с грузом диапазоном измерений от 0 до 30 м по ГОСТ 7502.
- 5.2.1.3 Линейку измерительную металлическую с диапазоном от 0 до 500 мм, от 0 до 1000 мм по ГОСТ 427.
- 5.2.1.4 Установка с тахеометром электронным Leica FlexLine TS02 plus 3" R500 по [1].

- 5.2.1.5 Термометр с ценой деления 0,1 °C и диапазоном измерений от 0 до плюс 50 °C по ГОСТ 28498.
 - 5.2.1.6 Анализатор-течеискатель типа АНТ-3М по [2].
 - 5.2.1.7 Веха телескопическая с призменным отражателем (рисунок А.1).
- 5.2.2 Вспомогательные средства поверки: мел, шпатель, щетки (металлические), микрокалькулятор.
- 5.2.3 Рабочие эталоны должны быть аттестованы в соответствии с действующим законодательством.
- 5.2.4 Допускается применение других, вновь разработанных или находящихся в эксплуатации средств измерений, удовлетворяющих по точности и пределам измерений требованиям настоящей методики.

6 ТРЕБОВАНИЯ К ОРГАНИЗАЦИИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 Поверку резервуаров осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица.
 - 6.2 Устанавливают следующие виды поверок резервуара:
- первичную, которую проводят после строительства резервуара перед его вводом в эксплуатацию и капитального ремонта;
- периодическую, которую проводят по истечению срока действия градуировочной таблицы и при внесении в резервуар конструктивных изменений, влияющих на его вместимость;
- внеочередную поверку проводят при изменении значений базовой высоты резервуара более чем на 0,1 % по результатам ежегодных её измерений.

Первичную поверку резервуаров проводят после их гидравлических испытаний.

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1 Поверку резервуара проводит физическое лицо, аттестованное в качестве поверителя и в области промышленной безопасности в соответствии с РД-03-20 [3], утвержденным приказом Ростехнадзора от 29.01.2007 № 37.
- 7.2 Измерения параметров при поверке резервуара проводит группа лиц, включая поверителя организации, указанной в 6.1, и не менее двух специалистов, прошедших курсы повышения квалификации и других лиц (при необходимости), аттестованных в области промышленной безопасности в соответствии с РД-03-20.
- 7.3 К поверке резервуара допускают лиц, изучивших настоящую рекомендацию, техническую документацию на резервуар и его конструкцию, средства поверки и прошедших инструктаж по безопасности труда в соответствии с ГОСТ 12.0.004, по промышленной безопасности в соответствии с РД-03-20.
- 7.4 Лица, проводящие поверку резервуара, используют спецодежду костюмы по ГОСТ Р 12.4.290, спецобувь по ГОСТ 12.4.137, строительную каску по ГОСТ 12.4.087, рукавицы по ГОСТ 12.4.010.

- 7.5 Предельно допустимая концентрация (ПДК) вредных паров и газов в воздухе, измеренная газоанализатором вблизи и внутри резервуара на высоте 2000 мм, не должна превышать 300 мг/м³ по ГОСТ 12.1.005-88.
 - 7.6 Измерения параметров резервуара во время грозы категорически запрещены.
- 7.7 Для освещения при проведении измерений параметров резервуара применяют светильники во взрывозащитном исполнении.
 - 7.8 Перед началом поверки резервуара проверяют исправность:
 - лестниц с поручнями и подножками;
 - помостов с ограждениями.
- 7.9 В процессе измерений параметров резервуара обеспечивают двух или трехкратный обмен воздуха внутри резервуара. При этом анализ воздуха на содержание вредных паров и газов проводят через каждый час.
- 7.10 Продолжительность работы внутри резервуара не более 4-х часов, после каждой четырехчасовой работы перерыв на один час.

8 УСЛОВИЯ ПОВЕРКИ

- 8.1 При поверке соблюдают следующие условия:
- 8.1.1 Измерения параметров резервуара проводят изнутри его.
- 8.1.2 Для проведения измерений параметров резервуара его освобождают от остатков нефти и нефтепродукта, зачищают, пропаривают (при необходимости), промывают и вентилируют.
 - 8.1.3 Температура окружающего воздуха и воздуха внутри резервуара (20 ± 15) °C.
- 8.1.4 При проведении периодической поверки допускается использовать результаты измерений вместимости «мертвой» полости, полученные ранее, и вносить их в таблицу Б.7 приложения Б, если изменение базовой высоты резервуара по сравнению с результатами её измерений в предыдущей поверке составляет не более 0,1 %.

9 ПОДГОТОВКА К ПОВЕРКЕ

- 9.1 При подготовке к поверке проводят следующие работы:
- 9.1.1 Изучают техническую документацию на резервуар, рабочие эталоны и вспомогательные средства поверки.
- 9.1.2 Подготавливают их согласно технической документации на них, утвержденной в установленном порядке.
- 9.1.3 Штатив тахеометра приводят в рабочее положение, устанавливают на него тахеометр, проводят необходимые операции к подготовки к работе, в соответствии с руководством по эксплуатации. Для удобства выполнения измерений рекомендуемая высота установки: 1650 1750 мм от днища резервуара до визирной линии тахеометра.
 - 9.1.4 Проводят высотную привязку установки тахеометра, для этого:
- а) опускают измерительную рулетку с грузом через измерительный люк то точки касания днища грузом рулетки и фиксируют её мелом;

- б) устанавливают тахеометр в области центра резервуара, при этом место установки выбирают с учетом стабильного позиционирования прибора (отсутствие хлопуна);
- в) тахеометр горизонтируют, с помощью триггеров в соответствии с его технической документацией. Выбирают режим измерений тахеометра HD-h-HZ. Величину горизонтального угла устанавливают $Hz=0^000^{'}00^{''}$;
- г) направляют визир оптической трубы тахеометра (далее визир тахеометра) по нормали к цилиндрической стенке резервуара в место пересечения днища и стенки (точка А рисунок А.3);
- д) измеряют расстояние $h_{\mathcal{A}}$ и вводят с обратным знаком в меню настроек тахеометра как высоту установки инструмента (рисунок A.3);
- е) повторно снимая показания h_A , проверяем правильность ввода данных. На меню дисплея отображения данных должны быть координаты: $Hz = 0^0 00^{'}00^{''}$; h = 0.
- 9.1.5 В программном обеспечении тахеометра формируют файл записи данных измерений.
 - 9.2 Операции поверки
- 9..2.1 При проведении поверки резервуара должны быть выполнены операции, указанные в таблице 2

Таблица 2

№ п/п	Наименование операции	Номер пункта Инструкции
1	Внешний осмотр	10.1
2	Измерение базовой высоты	10.2
3	Определение внутренних диаметров поясов резервуара	10.3
4	Измерения высот поясов резервуара	10.4
5	Определение параметров «мертвой» полости резервуара	10.5
6	Определение объемов внутренних деталей	10.6

10 ПРОВЕДЕНИЕ ПОВЕРКИ РЕЗЕРВУАРА

10.1 Внешний осмотр

- 10.1.1 При внешнем осмотре резервуара проверяют:
- состояние конструкции и внутренних деталей резервуара технической документации на него (паспорту, технологической карте на резервуар);
 - наличие необходимой арматуры и оборудования;
 - исправность лестниц и перил;
 - состояние днища резервуара (отсутствие бугров, ям);
 - чистоту внутренней поверхности резервуара;
- отсутствие деформации стенок резервуара, препятствующих проведению измерений параметров резервуара.

10.1.2 По результатам внешнего осмотра устанавливают возможность применения геометрического метода поверки резервуара.

10.2 Измерения базовой высоты резервуара

10.2.1 Базовую высоту резервуара H_6 измеряют измерительной рулеткой с грузом не менее двух раз. Расхождение между результатами двух измерений не должно превышать 2 мм (рисунок A.2).

В точке касания днища грузом рулетки проводят мелом отметку на днище резервуара.

- 10.2.2 Результаты измерений базовой высоты H_{6} с указанием места отсчета вносят в протокол, форма которого приведена в приложении Б (таблица Б.3).
- 10.2.3 Базовую высоту измеряют ежегодно. Ежегодные измерения базовой высоты резервуара проводит комиссия, назначенная приказом руководителя предприятия владельца резервуара, в состав которой должен быть включен специалист, прошедший курсы повышения квалификации по поверке и калибровке резервуаров.

При ежегодных измерениях базовой высоты резервуара резервуар может быть наполнен до произвольного уровня.

Результат измерений базовой высоты резервуара не должен отличаться от ее значения, указанного в протоколе поверки резервуара, более чем на 0,1 %.

Если это условие не выполняется, то проводят повторное измерение базовой высоты при уровне наполнения резервуара, отличающимся от его уровня наполнения, указанного в протоколе поверки резервуара, не более чем на 500 мм.

Результаты измерений базовой высоты оформляют актом, форма которого приведена в приложении В.

При изменении базовой высоты по сравнению с ее значением, установленным при поверке резервуара, более чем на 0,1 % устанавливают причину и устраняют ее. При отсутствии возможности устранения причины проводят внеочередную поверку резервуара.

10.3 Определение внутренних диаметров поясов резервуара

10.3.1 Определение внутренних диаметров поясов проводят с применением тахеометра по 5.2.1.4. Внутренне диаметры поясов резервуара D_i определяют по результатам измерений радиусов на 12 образующих в каждом поясе резервуара.

Тахеометр устанавливают в режим измерений «SD-Hz-Vz».

Измерение резервуара проводят:

- а) для первого пояса в верхнем сечении;
- б) для вышестоящих поясов в нижнем и верхнем сечениях.

Нижнее и верхнее сечения находятся в плоскости отходящих от сварного шва на величину равную 1/5 высоты пояса (рисунок A.4).

10.3.2 Измерение радиусов поясов резервуара проводят в следующей последовательности (рисунок А.5).

- 10.3.2.1 Направляют сетку нитей визира тахеометра на стенку резервуара в верхнем сечении 1-го пояса и измеряют: наклонное расстояние $I_{0\mathrm{B}}^1$, мм; вертикальный угол $V_{0\mathrm{B}}^1$, угл. сек.
- 10.3.2.2 Направляют сетку нитей визира тахеометра на стенку резервуара в нижнем сечении 2-го пояса и измеряют: наклонное расстояние $I_{0\mathrm{H}}^2$, мм; вертикальный угол $V_{0\mathrm{H}}^2$, угл. сек.
- 10.3.2.3 Направляют сетку нитей визира тахеометра на стенку резервуара в верхнем сечении 2-го пояса и измеряют: наклонное расстояние $I_{0\mathrm{B}}^2$, мм; вертикальный угол $V_{0\mathrm{B}}^2$, угл. сек.
- 10.3.2.4 Проводят аналогичные операции по 10.3.2.2, 10.3.2.3 и измеряют : наклонные расстояние $I_{0\mathrm{B}}^i$, мм; вертикальных углы $V_{0\mathrm{B}}^i$, угл. сек.

Примечание – В обозначениях $I_{0\mathrm{B}}^i$ и $V_{0\mathrm{B}}^i$ верхний индекс указывает номер текущего пояса, в нижнем индексе – цифра соответствует номеру образующей $(0, 1, \dots N)$, буква «н» и «в» соответствует плоскости (сечению) измерений (нижнее и верхнее соответственно).

- 10.3.2.5 Поворачивают алидаду тахеометра в горизонтальной плоскости против часовой стрелке на угол 30° (рисунок A.6). Фиксируют значение горизонтального угла ϕ_{1H}^1 , угл. сек. первой образующей.
- 10.3.2.6 Проведя аналогичные операции по 10.3.2.1 10.3.2.4 измеряют $I_{1 H(B)}^i$, мм; вертикальные углы $V_{1 H(B)}^i$.
- 10.3.2.7 Поворачивают алидаду тахеометра на угол 60° . Фиксируют значение горизонтального угла ϕ^1_{2H} , угл. сек. второй образующей и проводят операции по 10.3.2.1 10.3.2.6.
 - 10.3.2.8 Проводят аналогичные операции на остальных образующих.
- 10.3.2.9 Результаты измерений вносят в протокол, форма которого приведена в приложении Б (таблицы Б.4, Б.4.1).

10.4 Измерения высот поясов резервуара

Высоту і-го пояса резервуара h_i измеряют на нулевой и противоположной N/2 образующей резервуара (рисунок A.7), при помощи тахеометра. в следующей последовательности.

- 10.4.1 Устанавливают на тахеометра режим измерений «HD-h-Hz».
- 10.4.2 Направляют сетку нитей визира тахеометра на середину сварного шва соединения верхней границы 1-го пояса и нижней границы 2-го пояса. Измеряют расстояние высоту превышения, как расстояние по вертикали th_1 , мм.

- 10.4.3 Проводя аналогичные процедуры по 10.4.3 измеряют расстояния $th_2...th_k$, мм, вышестоящих поясов.
- 10.4.4 Результаты измерений вносят в протокол. форма которого приведена в приложении Б (таблица Б.5).

10.5 Определение параметров «мертвой» полости резервуара

При определении параметров «мертвой» полости резервуара проводят измерения:

- 1) объема неровностей днища;
- 2) высоты «мертвой» полости;
- 3) координаты точки касания днища грузом рулетки.

10.5.1 Измерение объема неровностей днища

Определение объема неровностей днища $\left(\Delta V_{\rm ДH}\right)_0$ проводят с применением тахеометра, вехи с призменным отражателем и измерительной рулетки путем измерения высот превышения рейки в точках пересечения концентрических окружностей днища (I, II,..,VIII) и 8 радиусов днища (рисунок A.9).

Измерения проводят в следующей последовательности.

10.5.1.1 Проводят высотную привязку тахеометра к точке касания днища грузом рулетки днища грузом рулетки.

Тахеометр приводят в отражательный режим измерений «HD-h-Hz».

Устанавливают веху с призменным отражателем в точку касания днища грузом рулетки, контролируя вертикальное положение по круговому уровню вехи.

Наводят сетку нитей визира в центр призменного отражателя и измеряют высоту превышения h_0 , мм, (рисунок A.8) и вводят с обратным знаком в меню настроек тахеометра как высоту установки инструмента.

Повторно снимая показания h_0 , проверяем правильность ввода данных. На меню дисплея отображения данных должны быть координаты: $Hz = 0^0 00^{'}00^{''}$; h = 0.

- 10.5.1.2 Формируют координаты отсчета (места установки вехи) на первом радиусе, для чего укладывают рулетку на днище резервуара, при этом начало отсчета совмещают с точкой установки станции, а второй конец совмещают с отметкой 1-ой образующей на стенке резервуара (рисунок А.9).
- 10.5.1.3 Устанавливают веху в точку $b_{1.1}$ (пересечение 1-й окружности на 1-й образующей), координаты отсчета приведены в таблице 3, контролируя вертикальное положение по круговому уровню вехи. Наводят сетку нитей визира в центр призменного отражателя и измеряют высоту превышения $b_{1.1}$, мм, (рисунок А.10). Последовательно устанавливая в остальных точках отсчета измеряют высоты превышения $b_{2.1}, \ldots, b_{8.1}$, мм. Таблица 3

ФГУП «ВНИИР» Страница 9 из 38

 $^{^1}$ В обозначении точки отсчета $b_{1.1}...b_{8.1}$ – первый индекс указывает номер радиуса концентрической окружности днища, второй – номер радиуса днища (образующей)

Тип		Отсч	ет по шкал	е ленты	рулетки, г	им, на ра	диусе	
	1	11	III	IV	V	VI	VII	VIII
PBC-1000	0,35R	0,5R	0,61R	0,71R	0,79R	0,86R	0,93R	стенка

- 10.5.1.4 Поворачивают алидаду тахеометра на 45° против часовой стрелки и укладывают ленту рулетки на 2-й радиус днища, совмещая начало отсчета (точка $b_{2.1}$), а второй конец совмещают с отметкой 2-ой образующей на стенке резервуара (рисунок A.9). Проводят измерения высот превышения $b_{2.2}, \ldots, b_{8.2}$ на втором радиусе аналогично.
- 10.5.1.5 Проводя аналогичные процедуры по 10.5.1.2-10.5.1.4 измеряют высоты превышений точек отсчета на остальных образующих.
- 10.5.1.6 Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.6).

10.5.2 Измерение высоты «мертвой» полости

Измерение высоты «мертвой» полости резервуара проводят с применением тахеометра в следующей последовательности.

Устанавливают веху с призменным отражателем на плоскость среза приемнораздаточного устройства. Направляют сетку нитей визира на центр призмы и измеряют расстояние $th_{\rm MR}$, мм, как высоту превышения (рисунок А.11). Измерения проводят 2 раза, расхождение между результатами измерений должно быть не более 1 мм.

Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.7).

10.5.3 Измерение координаты точки касания днища грузом рулетки

Координату точки касания днища грузом рулетки измеряют тахеометром в следующей последовательности.

Устанавливают веху в точку касания днища грузом рулетки, контролируя вертикальное положение по круговому уровню вехи. Наводят сетку нитей визира в центр призменного отражателя и измеряют горизонтальный угол ϕ_0 , \circ , и контролируют высоту h_0 , мм. В соответствии с пунктом 10.5.1.1 её значение должно быть равно нулю.

Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.8).

10.6 Определение объемов внутренних деталей

Объемы внутренних деталей, находящихся в резервуаре, определяют по данным проектной документации на резервуар.

Внутренняя деталь, которая влияет на вместимость резервуара является люк-лаз и центральная труба.

Данные объемов и расположения внутренних деталей носят в протокол поверки форма которого приведена в приложении Б (таблица Б.9).

11 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И СОСТАВЛЕНИЕ ГРАДУИРОВОЧНОЙ ТАБЛИЦЫ

11.1 Обработка результатов измерений

11.1.1 Обработку результатов измерений при поверке проводят в соответствии с приложением В.

11.2 Составление градуировочной таблицы резервуара

11.2.1 Градуировочную таблицу составляют начиная с уровня $H_{\rm mn}$, соответствующего высоте «мертвой» полости $h_{\rm mn}$, до предельного уровня $H_{\rm np}$, вычисляя посантиметровую вместимость резервуара i-го пояса $V(H)_i$, м³, по формуле

$$V(H)_{i} = V(H)_{i-1} + \frac{\pi D_{i}^{2}}{4 \cdot 10^{8}} (H - H_{i-1}), \tag{1}$$

где $V(H)_{i-1}$ – посантиметровая вместимость резервуара, соответствующая уровню H_{i-1} , м³;

H – уровень жидкости, соответствующий, отсчитываемый от точки касания днища грузом рулетки, см;

 H_{i-1} – уровень жидкости, соответствующий суммарной высоте поясов, см;

 D_i – внутренний диаметр i-го пояса, вычисляемый по формуле (Д.1), мм.

11.2.2 Предельный уровень $H_{\rm np}$, см, до которого составляют градуировочную таблицу, вычисляют по формуле

$$H_{\rm np} = \frac{\eta}{\sqrt{1+\eta^2}} \left[H_6 \frac{\eta}{\sqrt{1+\eta^2}} + \frac{1}{\eta} \sum_{i=1}^n h_i + r_0 \cos \varphi \right], \tag{2}$$

где n – номер пояса, выбираемый из ряда: 2, 3,..., n;

 h_i – высота і-го пояса, мм;

 $\it r_0$ – радиус расположения точки касания днища грузом рулетки, мм;

ф – угол направления наклона резервуара,

о.

11.2.3 Посантиметровую вместимость 1-го пояса $V(H)_1$, м³, вычисляют по формуле (Д.8).

11.2.4 В пределах каждого пояса вычисляют коэффициент вместимости, равный вместимости, приходящейся на 1 мм высоты наполнения.

- 11.2.5 Градуировочную таблицу «мертвой» полости составляют, начиная от исходной точки до уровня $H_{\scriptscriptstyle \mathrm{MII}}$, соответствующий высоте «мертвой» полости.
- 11.2.6 При составлении градуировочной таблицы значения вместимости округляют до 1 дм³.
- 11.2.7 Значения посантиметровой вместимости, указанные в градуировочной таблице, соответствуют температуре 20 °C.
- 11.2.8 Результаты расчетов вносят в журнал, форма которого приведена в приложении Г.
- 11.2.9 Обработка результатов измерений может быть проведена ручным способом или с использованием разработанного и аттестованного в установленном порядке программного обеспечения.
- 11.2.10 Результаты измерений должны быть оформлены протоколом поверки, форма которого приведена в приложении Б, который является исходным документом для расчета градуировочной таблицы.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки резервуара оформляют свидетельством о поверке в соответствии с [4].
 - 12.2 К свидетельству о поверке прикладывают:
 - а) градуировочную таблицу;
- б) протокол поверки (оригинал прикладывают к первому экземпляру градуировочной таблицы);
 - в) эскиз резервуара.
- 12.3 Форма титульного листа градуировочной таблицы и форма градуировочной таблицы приведены в приложении Г. Форма акта ежегодных измерений базовой высоты резервуара приведена в приложении В.

Протокол поверки подписывает поверитель и лица, участвующие при проведении поверки резервуара.

Титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель.

12.4 Градуировочную таблицу утверждает руководитель органа аккредитованного на право проведения поверки.

ПРИЛОЖЕНИЕ А

Рисунок А.1 – Веха телескопическая с призменным отражателем

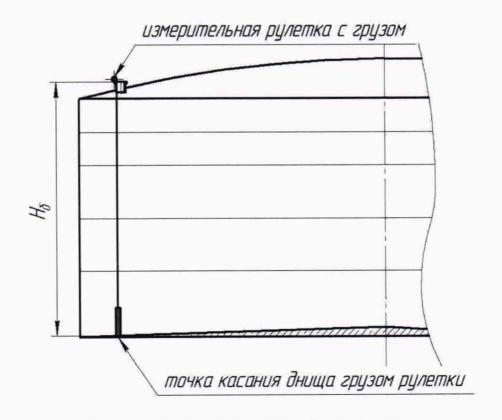


Рисунок А.2 - Схема измерений базовой высоты

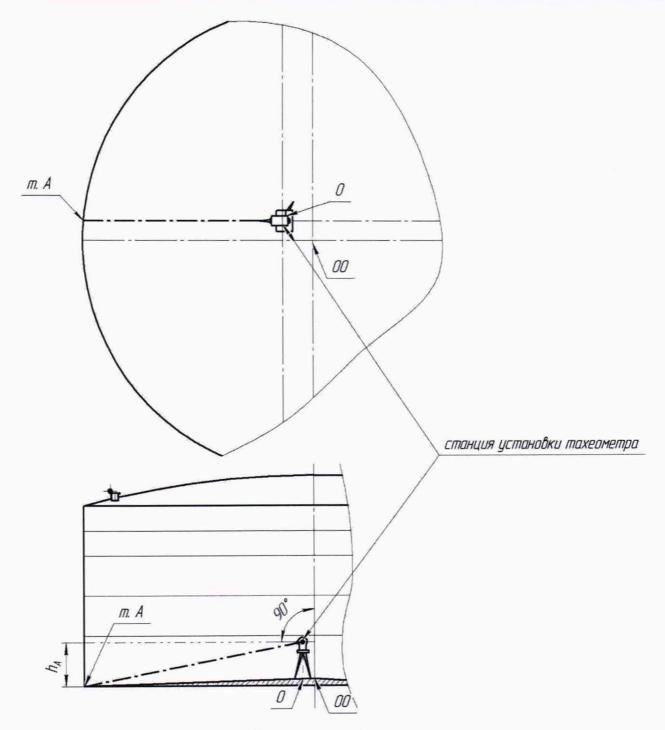


Рисунок А.3 – Схема высотной привязки тахеометра

ФГУП «ВНИИР» Страница 14 из 38

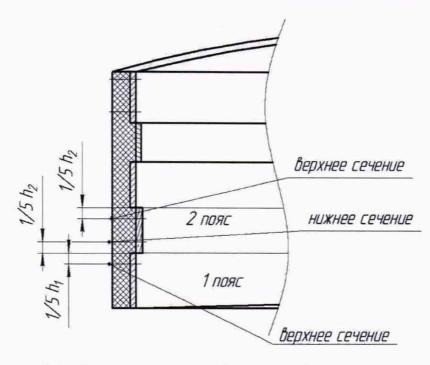


Рисунок A.4 – Схема расположений плоскостей измерений (сечений) внутренних радиусов резервуара

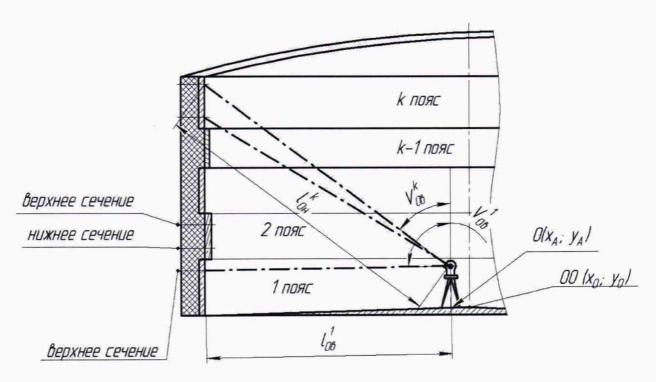


Рисунок А.5 – Схема измерений радиусов поясов резервуара

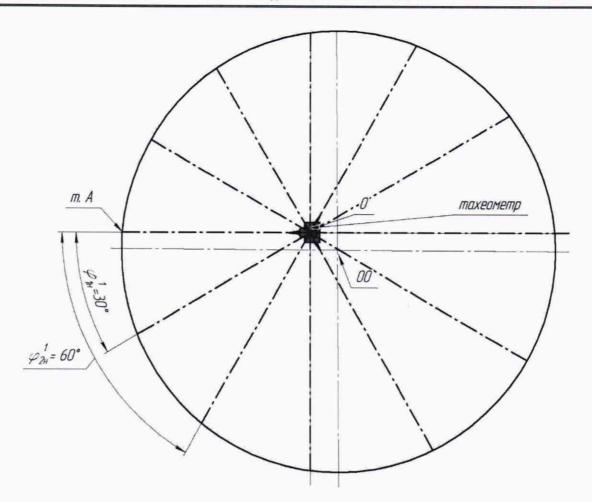


Рисунок А.6 - Схема образующих резервуара

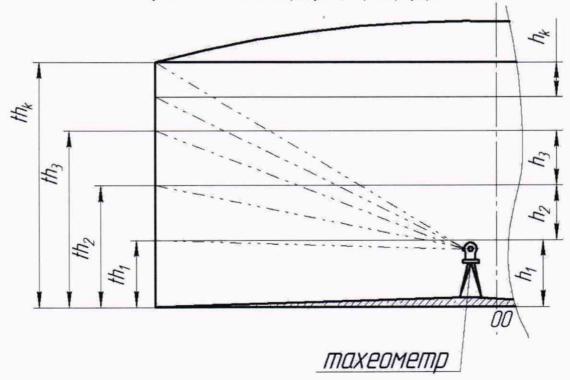


Рисунок А.7 - Схема измерений высоты поясов

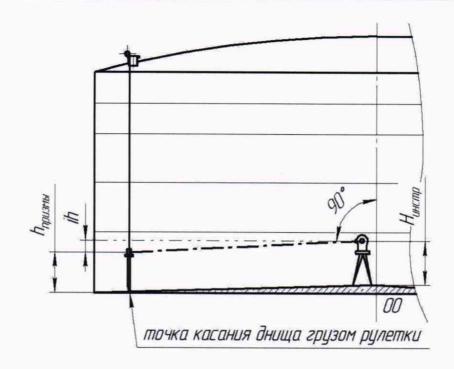


Рисунок А.8 – Схема измерений высотной привязки тахеометра

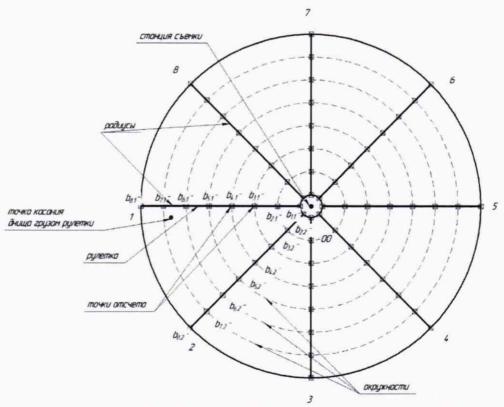


Рисунок А.9 – Координаты отсчета (место установки вехи) неровностей днища

ФГУП «ВНИИР» Страница 17 из 38

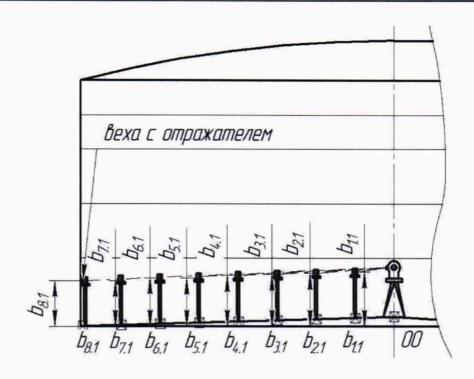


Рисунок А.10 – Схема измерений высот превышения неровностей днища

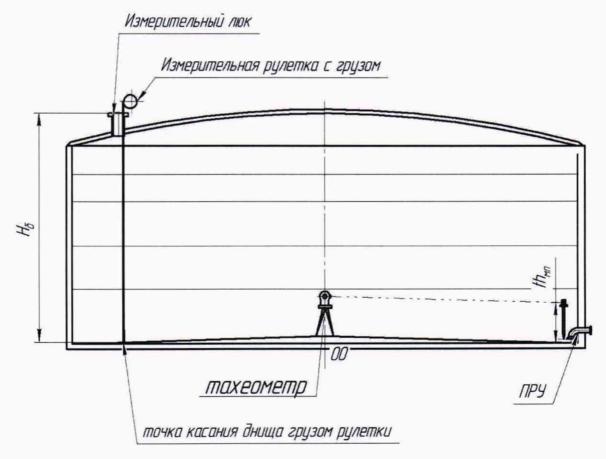


Рисунок А.11 - Схема измерения высоты (превышения) «мертвой» полости

ПРИЛОЖЕНИЕ Б

(обязательное)

Форма протокола поверки резервуара

ПРОТОКОЛ

поверки резервуара геометрическим методом

Таблица Б.1 – Общие данные

Код	Регистрационный		Дата		Основание для проведения	
документа	номер	число	месяц	год	поверки	
1	2	3	4	5	6	
					Первичная,	
					периодическая,	
					внеочередная	

Продолжение таблицы Б.1

Место проведения поверки	Рабочие эталоны и вспомогательные средства
7	8

Окончание таблицы Б.1

	Резервуар	
Тип	Номер	Погрешность определения
1700	Помер	вместимости резервуара, %
9	10	11

Таблица Б.2 – Условия проведения измерений

Температура воздуха внутри резервуара, °С	Загазованность, мг/м ³			

Таблица Б.3 – Базовая высота резервуара

В миллиметрах

Тошка измерения базарай видети. Н	Номер из	змерения
Точка измерения базовой высоты $H_{f 6}$	1	2
Риска измерительного люка		
Верхний срез измерительного люка		

Таблица Б.4 – Измерение внутренних радиусов

оясов р	езерв	yapa										милл	иметр	ax
Номер пояса						Значе	_{ение} /	[;] V нас	бразу	ющей				
		0	1	2	3	4	5	6	7	8	9	10	11	12
ı	В													
II	н													
"	В													
III	Н													
111	В													
IV	н													
1 V	В													
V	Н													
•	В													
VI	Н													
V 1.	В													
VII	Н													
VII	В													
VIII	Н													
VIII	В													

Таблица Б.4.1 – Параметры образующих

Параметр				Номер	образуюц	цей		
		0	1	2	3	4	5	6
^Ф <i>N</i> , угл. сек.		00'00"						
V _N H								
угл. сек	,							

продолжение таблицы 4.1

Параметр -		Номер образующей									
		7	8	9	10	11	12				
Ф _N , угл. сек.	н										
V _{N , угл.} сек	В										

Таблица Б.5 - Высота превышения поясов

Номер образующей	Высота превышения поясов th_{i} , мм				
	J	II	Ш	IV	V
0					
N/2-1					

продолжение таблицы Б.5

Номер	Высо	ота превышения поясов <i>th_i</i>	, мм
образующей	VI	VII	VIII
0			
N/2-1			

Таблица Б.6 – Измерение неровностей днища

В миллиметрах

№ радиуса	Высота превышения в точке $b_{i.j}$ отсчет на концентрической окружности							
(образую щей)	Ī	П	Ш	IV	V	VI	VII	VIII
1								
2								
3								
4								
5								
6								
7								
8								

Таблица Б.7 – Параметры «мертвой» полости

№ измерения	Высота (превышения) «мертвой» полости $\mathit{th}_{M\Pi}$, мм	Вместимость $V_{\rm M\Pi}$, м ³
1	2	3
1		
2		

Примечание — Графу 3 заполняют только при принятии вместимости «мертвой» полости по 7.1.4

Таблица Б.8 – Координата точки измерений уровня

жидкости и базовой высоты резервуара

Папамотп	Номер измерения		
Параметр	1	2	
Угол ^Ф 0 (градус, минута, секунда)			
Высота превышения h_0 , мм			

Таблица Б.9 – Внутренние детали цилиндрической формы

	Высота от	Расстояние от	
Диаметр, мм	Нижняя граница <i>h</i> ^в д	Верхняя граница <i>h</i> ^в д	стенки первого пояса /д, мм

Должности

Подписи и оттиски

Инициалы, фамилии

поверительного клейма, печатей (штампов)

ПРИЛОЖЕНИЕ В

(рекомендуемое) Форма акта измерений базовой высоты резервуара

УТВЕРЖДАЮ

Руководитель предприятия - владельца резервуара (директор, гл. инженер)

AKT

ИЗM	ерений базовой высо	ты резервуара		
	OT «»			
COCTABRIBLE B TOM LITO KOMINCOL	NO HOSHOLIBURGO DDIANS	2014 50		
Составлен в том, что комисси	ия, пазначенная прика	130M 110	наименование	
	, в соста	ве председате	ля	
предприятия - владельца резервуара				
	и члено	B:		
инициалы, фамилия		иниц	иалы, фамилии	
провела контрольные изме	ерения базовой выс	оты резервуар	а стального	вертикального
цилиндрического теплоизолиров	ванного РВС	_ Nº		
при температуре окружающе				
Измерения проведены рулет	кой типа	No.	co cno	ком
действия поверки до «» _			00 000	NO.
действия поверки до «/	201.			
Результаты измерений предо	ставлены в таолице 1.		_	
Таблица 1			В милли	метрах
	та резервуара		V/2020111 N/	
Среднее арифметическое	Значение базовой		Уровень ж	
значение результатов двух измерений (H_6) _{k}	установленное калибровке резерву		в резеря	syape
1	2	/apa (/ /o/ii	3	
	1			
_		- 0/		
Относительное изменение ба	азовой высоты резерв	yapa δ _б , %, вь	числяют по ф	ормуле
		-		
Относительное изменение ба $\delta_6 = \frac{\left(H_6\right)_k - \left(H_6\right)_n}{\left(H_6\right)_n} \cdot 100, \; \text{где}$		-		
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	$(H_6)_{\kappa}, (H_6)_{n}, n_{\kappa}$	риведены в 1-	
	е значения величин (л	$(H_6)_{\kappa}, (H_6)_{n}, n_{\kappa}$	риведены в 1-	
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	$(H_6)_{\kappa}, (H_6)_{n}, n_{\kappa}$	риведены в 1-	
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	Н _б) _к , (Н _б) _п , пр	риведены в 1- гара.	
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	$\left(H_{6}\right)_{\kappa},\left(H_{6}\right)_{n},$ no	риведены в 1- гара.	
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	Н _б) _к , (Н _б) _п , пр	риведены в 1- гара.	й, 2-й графах.
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	$H_6)_{_{ m K}},\ \left(H_6\right)_{_{ m II}},\ проверки резерву$ Председатель	риведены в 1- гара. комиссии	й, 2-й графах.
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	Н _б) _к , (Н _б) _п , пр оверки резерву Председатель	риведены в 1- гара. комиссии	й, 2-й графах.
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	$H_6)_{_{ m K}},\ \left(H_6\right)_{_{ m II}},\ проверки резерву$ Председатель	риведены в 1- гара. комиссии	й, 2-й графах.
$\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \text{где}$	е значения величин (л	Н _б) _к , (Н _б) _п , проверки резерву Председатель подпись Члены комисс	риведены в 1- гара. КОМИССИИ инициалы, фа	й, 2-й графах. милия

Страница 23 из 38

ПРИЛОЖЕНИЕ Г

Форма титульного листа градуировочной таблицы и форма градуировочной таблицы

Г.1 Форма титульного листа градуировочной таблицы ¹	
	УТВЕРЖДАЮ
	«»201_ г.
ГРАДУИРОВОЧНАЯ ТАБЛИЦА	
на резервуар стальной вертикальный цилиндрический	теплоизолированный
PBC	
Организация	
Погрешность определения вместимости: ± 0,20 %	
Срок очередной поверки	
	Поверитель

Страница 24 из 38

подпись

должность, инициалы, фамилия

¹ Форма градуировочной таблицы не подлежит изменению

Г.2 Форма градуировочной таблицы резервуара

Организация	
Резервуар №	

Г.2.1 Форма градуировочной таблицы резервуара

Таблица Г.2 – Посантиметровая вместимость нижней части резервуара

Уровень наполнения, см	Вместимость, м ³	Коэффициент вместимости, м ³ /мм
H _{M.n}		
Н _{м.п} + 1		
H _{м.п} + 2		
•>		
		-
*0		
•.		
*		

Таблица Г.3 – Средняя вместимость в пределах вместимости пояса, приходящейся на 1 см высоты наполнения

Уровень	Вместимость	Уровень	Вместимость	Уровень	Вместимость
наполнения	, м ³	наполнения	, м ³	наполнения	, M ³
, MM		, мм		, MM	
1		4		7	
2		5		8	
3		6		9	

ПРИЛОЖЕНИЕ Д

Обработка результатов измерений

Д.1 Определение внутренних диаметров поясов резервуара

Д.1.1 Внутренние диаметры в сечении (нижнее, верхнее) *i*-го пояса резервуара D_i , мм, измеренные по 10.3 вычисляют по формуле

$$D_{\mathsf{H}(\mathsf{B})}^{i} = 2 \cdot R_{\mathsf{H}(\mathsf{B})}^{i},\tag{A.1}$$

где $R_{{\sf H}({\sf B})}^i$ – внутренний радиус в нижнем (верхнем) сечении i-го пояса, мм.

Д.1.2 Для вычисления внутреннего радиуса пояса резервуара проводят измерения следующих параметров:

- наклонного расстояния $I_{\mathsf{N}\mathsf{H}(\mathsf{B})}^i$ (параметр SD) ;
- вертикального угла $V_{\mathsf{NH}(\mathsf{B})}^i$ (параметр Vz) ;
- горизонтального угла ϕ_N (параметр Hz).

Д.1.3 Положение точки (например, точка A), лежащей на поверхности стенки пояса, определяется тремя координатами декартовой системы координат $\left(x_{H(B)}^i,\ y_{H(B)}^i,\ z_{H(B)}^i\right)$.

Из-за не совпадения начала системы координат измерений (станции съемки) с геометрическим центром резервуара (центром окружности) радиус резервуара определяют с учетом смещения станции съемки от геометрического центра резервуара.

Д.1.4 При направлении визирной линии тахеометра к точке А расстояние от точки $\left(x_{\mathsf{NH}(\mathsf{B})}^i,\,y_{\mathsf{NH}(\mathsf{B})}^i,\,z_{\mathsf{NH}(\mathsf{B})}^i\right)$ до геометрического центра резервуара в плоскости измерений (нижнее/верхнее сечение), в соответствии с [4] вычисляют по формуле

$$\left| \sqrt{\left(x_{NH(B)}^{i} - a_{H(B)}^{i} \right)^{2} + \left(y_{NH(B)}^{i} - b_{H(B)}^{i} \right)^{2}} \right| - R_{H(B)}^{i} = 0, \quad (\text{Д.2})$$

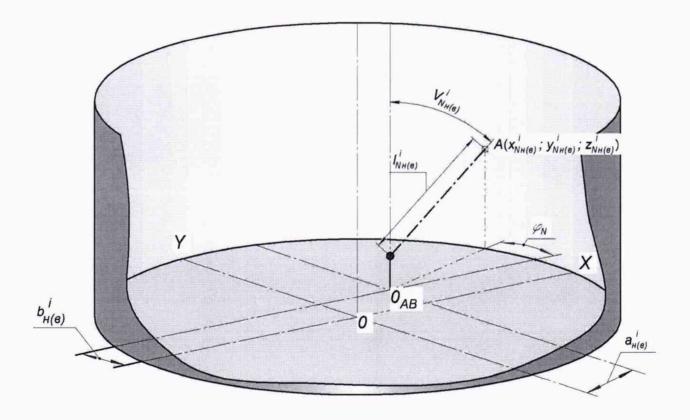
где $(X_{NH(B)}^{i}; y_{NH(B)}^{i})$ – координаты точки А в сечении *N*, мм;

 $a_{{\sf H}({\sf B})}^i,\ b_{{\sf H}({\sf B})}^i$ — смещение по оси X и Y места установки станции съемки от геометрического центра резервуара, мм.

Величины $\left(x_{\mathsf{NH}(\mathsf{B})}^i \, ; \, y_{\mathsf{NH}(\mathsf{B})}^i \right)$ вычисляют по формуле

$$X_{NH(B)}^{i} = I_{NH(B)}^{i} \cdot \cos \varphi_{N} \cdot \cos \left(90 - V_{NH(B)}^{i}\right);$$
 (Д.3)

$$y_{NH(B)}^{i} = I_{NH(B)}^{i} \cdot \sin \varphi_{N} \cdot \cos \left(90 - V_{NH(B)}^{i}\right),$$
 (Д.4)


где $I_{\mathsf{N}\mathsf{H}(\mathsf{B})}^i$ – наклонное расстояние, мм;

 $V_{\mathsf{NH}(\mathsf{B})}^i$ – вертикальный угол (зенитный), измеренный в і-ом поясе в нижнем (верхнем) сечении, угл. сек;

 ϕ_{N} – горизонтальный угол N-образующей, угл. сек.

Расстояние $r_{NH(B)}^i$ от точки $\left(X_{NH(B)}^i ; \, y_{NH(B)}^i \right)$ до геометрического центра резервуара в нижнем (верхнем) сечении на N-ой образующей i-го пояса вычисляют по формуле

$$r_{N.H(B)}^{i} = \left| \sqrt{\left(x_{N.H(B)}^{i} - a_{H(B)}^{i}\right)^{2} + \left(y_{N.H(B)}^{i} - b_{H(B)}^{i}\right)^{2}} \right|.$$
 (Д.5)

ФГУП «ВНИИР» Страница 27 из 38

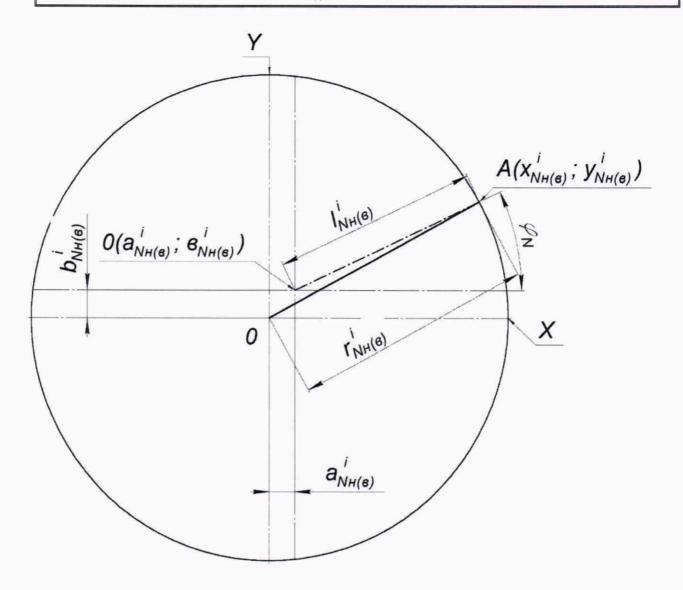


Рисунок Д.1 – Параметры измерений радиуса $r_{N_{\mathsf{H}(\mathsf{B})}}^{i}$ i-го пояса при j-ом измерении в нижнем (верхнем) сечении

Д.1.5 Смещение станции съемки от геометрического центра резервуара $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i$ и расстояние от точек на поверхности пояса до центра окружности $R_{\mathsf{H}(\mathsf{B})}^i$ в нижнем (верхнем сечении) і-го пояса вычисляют методом наименьших квадратов.

Параметры $a_{{\sf H}({\sf B})}^i,\;b_{{\sf H}({\sf B})}^i,\;R_{{\sf H}({\sf B})}^i$ вычисляют решая систему линейных уравнений

$$\mathbf{a}_{H(B)}^{i} = \left[\sum_{j=0}^{N} x_{j.H(B)}^{i} - R_{H(B)}^{i} \sum_{j=0}^{N} \frac{\left(x_{j.H(B)}^{i} - a_{H(B)}^{i} \right)}{r_{j.H(B)}^{i}} \right] \cdot \frac{1}{N} ; \qquad (\text{Д.6})$$

ФГУП «ВНИИР» Страница 28 из 38

$$b_{H(B)}^{i} = \left[\sum_{j=1}^{N} y_{j.H(B)}^{i} - R_{H(B)}^{i} \sum_{j=1}^{N} \frac{\left(y_{j.H(B)}^{i} - b_{H(B)}^{i} \right)}{r_{j.H(B)}^{i}} \right] \cdot \frac{1}{N}; \qquad (\text{Д.7})$$

$$R_{H(B)}^{i} = \frac{1}{N} \cdot \sum_{i=1}^{N} r_{j.H(B)}^{i},$$
 (Д.8)

где $r_{j,\mathsf{H}(\mathsf{B})}^i$ – радиус *i*-го пояса на N-ой образующей в нижнем (верхнем) сечении, мм;

N — номер образующей (число измерений), в соответствии с 10.3.1 принято равным 12;

 $X_{j,H(B)}^{i}$, $Y_{j,H(B)}^{i}$ – координаты точки внутренней поверхности на N-ой образующей в нижнем (верхнем) сечении i-го пояса резервуара, мм.

Радиус $\emph{i-}$ го пояса на N-ой образующей в нижнем (верхнем) сечении $\emph{r}^\emph{i}_{\emph{j.}\text{H(B)}}$ вычисляют по формуле

$$r_{j.H(B)}^{i} = \sqrt{\left(x_{j.H(B)}^{i} - a_{H(B)}^{i}\right)^{2} + \left(y_{j.H(B)}^{i} - b_{H(B)}^{i}\right)^{2}},$$
 (Д.9)

Д 1.6 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i$, $b_{\mathsf{H}(\mathsf{B})}^i$, $P_{\mathsf{H}(\mathsf{B})}^i$ проводят в следующей последовательности.

Д.1.6.1 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,\ \mathsf{B}$ нулевом приближении $\left(a_{0.\mathsf{H}(\mathsf{B})}^i,\ b_{0.\mathsf{H}(\mathsf{B})}^i,\ R_{0.\mathsf{H}(\mathsf{B})}^i\right)$:

- 1) устанавливают значение $a_{0.{\rm H}({\rm B})}^i,\ b_{0.{\rm H}({\rm B})}^i$ в формуле (Д.9) равным нулю.
- 2) вычисляют значения $r_{j,{\sf H}({\sf B})}^i$ в соответствии с формулой (Д.9)

$$\begin{split} r_{0.0.\text{H(B)}}^{i} &= \sqrt{\left(x_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{0.\text{H(B)}}^{i}\right)^{2}}\,; \qquad r_{0.1.\text{H(B)}}^{i} &= \sqrt{\left(x_{1.\text{H(B)}}^{i}\right)^{2} + \left(y_{1.\text{H(B)}}^{i}\right)^{2}}\,; \\ r_{0.3.\text{H(B)}}^{i} &= \sqrt{\left(x_{3.\text{H(B)}}^{i}\right)^{2} + \left(y_{3.\text{H(B)}}^{i}\right)^{2}}\,; \; \dots & r_{0.12.\text{H(B)}}^{i} &= \sqrt{\left(x_{12.\text{H(B)}}^{i}\right)^{2} + \left(y_{12.\text{H(B)}}^{i}\right)^{2}}\,; \end{split}$$

Примечание — В обозначении $r_{0.0.\text{H(B)}}^I$ верхний индекс i соответствует номеру пояса, в нижнем индексе: первое число указывает номер приближения, второе число — номер образующей, н(в) нижнее (верхнее) сечение.

3) значение $R^i_{0.0,\mathrm{H(B)}}$ вычисляют по формуле (Д.8):

$$R_{0H(B)}^{i} = \frac{1}{12} \Big(r_{0.0.H(B)}^{i} + r_{0.1.H(B)}^{i} + r_{0.2.H(B)}^{i} + \dots + r_{0.12.H(B)}^{i} \Big);$$

4) вычисляют значения $a_{0.\mathsf{H}(\mathsf{B})}^i,\ b_{0.\mathsf{H}(\mathsf{B})}^i$ в соответствии с формулами (Д.6) и (Д.7) соответственно:

$$a_{0.0\text{H(B)}}^{i} = \frac{x_{0\text{H(B)}}^{i} + x_{1\text{H(B)}}^{i} + \ldots + x_{12\text{H(B)}}^{i}}{12} - \frac{x_{0\text{H(B)}}^{i}}{\sqrt{\left(x_{0\text{H(B)}}^{i}\right)^{2} + \left(y_{0\text{H(B)}}^{i}\right)^{2}}} + \frac{x_{1\text{H(B)}}^{i}}{\sqrt{\left(x_{1\text{H(B)}}^{i}\right)^{2} + \left(y_{1\text{H(B)}}^{i}\right)^{2}}} + \frac{x_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{2\text{H(B)}}^{i}\right)^{2} + \left(y_{2\text{H(B)}}^{i}\right)^{2}}} + \ldots + \frac{x_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{12\text{H(B)}}^{i}\right)^{2} + \left(y_{12\text{H(B)}}^{i}\right)^{2}}}};$$

$$b_{0.0\text{H(B)}}^{i} = \frac{y_{0\text{H(B)}}^{i} + y_{1\text{H(B)}}^{i} + \dots + y_{12\text{H(B)}}^{i}}{12} - \frac{y_{0\text{H(B)}}^{i}}{\sqrt{\left(x_{0\text{H(B)}}^{i}\right)^{2} + \left(y_{0\text{H(B)}}^{i}\right)^{2}}} + \frac{y_{1\text{H(B)}}^{i}}{\sqrt{\left(x_{1\text{H(B)}}^{i}\right)^{2} + \left(y_{1\text{H(B)}}^{i}\right)^{2}}} + \frac{y_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{12\text{H(B)}}^{i}\right)^{2} + \left(y_{12\text{H(B)}}^{i}\right)^{2}}} + \frac{y_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{12\text{H(B)}}^{i}\right)^{2} + \left(y_{12\text{H(B)}}^{i}\right)^{2}}} \right],$$

Д.1.6.2 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,\ \mathsf{B}$ первом приближении $\left(a_{\mathsf{1.H}(\mathsf{B})}^i,\ b_{\mathsf{1.H}(\mathsf{B})}^i,\ R_{\mathsf{1.H}(\mathsf{B})}^i\right)$:

$$\begin{split} r_{1.0.\text{H(B)}}^{i} &= \sqrt{\left(x_{0.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{0.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ r_{1.1\text{H(B)}}^{i} &= \sqrt{\left(x_{1.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{1.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ r_{1.3.\text{H(B)}}^{i} &= \sqrt{\left(x_{3.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{3.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ \dots\\ r_{1.12.\text{H(B)}}^{i} &= \sqrt{\left(x_{12.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{12.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ R_{1\text{H(B)}}^{i} &= \frac{1}{42}\left(r_{1.0.\text{H(B)}}^{i} + r_{1.1.\text{H(B)}}^{i} + r_{1.2.\text{H(B)}}^{i} + \dots + r_{1.12.\text{H(B)}}^{i}\right); \end{split}$$

ФГУП «ВНИИР»

$$a_{1H(B)}^{i} = \frac{x_{0H(B)}^{i} + x_{1H(B)}^{i} + \dots + x_{12H(B)}^{i}}{12} - \frac{R_{1H(B)}^{i}}{12} \left(\frac{x_{0H(B)}^{i} + \frac{x_{1H(B)}^{i}}{r_{1.0H(B)}^{i}} + \frac{x_{1H(B)}^{i}}{r_{1.1H(B)}^{i}} + \frac{x_{2H(B)}^{i}}{r_{1.2H(B)}^{i}} + \dots + \frac{x_{12H(B)}^{i}}{r_{1.12H(B)}^{i}} \right);$$

$$b_{1H(B)}^{i} = \frac{y_{0H(B)}^{i} + y_{1H(B)}^{i} + \dots + y_{12H(B)}^{i}}{12} - \frac{R_{1H(B)}^{i}}{12} \left(\frac{y_{0H(B)}^{i} + y_{1H(B)}^{i}}{r_{1.0H(B)}^{i}} + \frac{y_{1H(B)}^{i}}{r_{1.1H(B)}^{i}} + \frac{y_{2H(B)}^{i}}{r_{1.2H(B)}^{i}} + \dots + \frac{y_{12H(B)}^{i}}{r_{1.12H(B)}^{i}} \right);$$

Д.1.6.3 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,$ во втором приближении $\left(a_{\mathsf{2.H}(\mathsf{B})}^i,\ b_{\mathsf{2.H}(\mathsf{B})}^i,\ R_{\mathsf{2.H}(\mathsf{B})}^i\right)$:

$$\begin{split} r_{2.0.\text{H(B)}}^{i} &= \sqrt{\left(x_{0.\text{H(B)}}^{i} - a_{1.\text{H(B)}}^{i}\right)^{2} + \left(y_{0.\text{H(B)}}^{i} - b_{1.\text{H(B)}}^{i}\right)^{2}};\\ r_{2.1\text{H(B)}}^{i} &= \sqrt{\left(x_{1.\text{H(B)}}^{i} - a_{1.\text{H(B)}}^{i}\right)^{2} + \left(y_{1.\text{H(B)}}^{i} - b_{1.\text{H(B)}}^{i}\right)^{2}};\\ r_{2.3.\text{H(B)}}^{i} &= \sqrt{\left(x_{3.\text{H(B)}}^{i} - a_{1.\text{H(B)}}^{i}\right)^{2} + \left(y_{3.\text{H(B)}}^{i} - b_{1.\text{H(B)}}^{i}\right)^{2}}; \end{split}$$

...

$$\begin{split} r_{2.12.\text{H(B)}}^{i} &= \sqrt{\left(x_{12.\text{H(B)}}^{i} - a_{1.\text{H(B)}}^{i}\right)^{2} + \left(y_{12.\text{H(B)}}^{i} - b_{1.\text{H(B)}}^{i}\right)^{2}};\\ R_{2\text{H(B)}}^{i} &= \frac{1}{12} \left(r_{2.0.\text{H(B)}}^{i} + r_{2.1.\text{H(B)}}^{i} + r_{2.2.\text{H(B)}}^{i} + \dots + r_{2.12.\text{H(B)}}^{i}\right);\\ a_{2\text{H(B)}}^{i} &= \frac{x_{0\text{H(B)}}^{i} + x_{1\text{H(B)}}^{i} + \dots + x_{12\text{H(B)}}^{i}}{12} - \\ &- \frac{R_{2\text{H(B)}}^{i}}{12} \left(\frac{x_{0\text{H(B)}}^{i} + x_{1\text{H(B)}}^{i} + \frac{x_{1\text{H(B)}}^{i}}{r_{2.1\text{H(B)}}^{i}} + \frac{x_{2\text{H(B)}}^{i}}{r_{2.2\text{H(B)}}^{i}} + \dots + \frac{x_{12\text{H(B)}}^{i}}{r_{2.12\text{H(B)}}^{i}}\right); \end{split}$$

$$\begin{split} b_{2\text{H(B)}}^{i} &= \frac{y_{0\text{H(B)}}^{i} + y_{1\text{H(B)}}^{i} + \ldots + y_{12\text{H(B)}}^{i}}{12} - \\ &- \frac{R_{2\text{H(B)}}^{i}}{12} \Bigg(\frac{y_{0\text{H(B)}}^{i}}{r_{2.0\text{H(B)}}^{i}} + \frac{y_{1\text{H(B)}}^{i}}{r_{2.1\text{H(B)}}^{i}} + \frac{y_{2\text{H(B)}}^{i}}{r_{2.2\text{H(B)}}^{i}} + \ldots + \frac{y_{12\text{H(B)}}^{i}}{r_{2.12\text{H(B)}}^{i}} \Bigg); \end{split}$$

Д.1.6.4 Операции вычисления прекращают в случае выполнения условия

$$\left| R_{j,H(B)}^i - R_{j-1,H(B)}^i \right| \le 0,001 \text{ mm} ,$$

где j – номер приближения (0, 1, ...m).

Д.1.7 Внутренний диаметр D^i і-го пояса вычисляют по формуле

$$D^i = R_{\rm H}^i + R_{\rm B}^i, \tag{Д.10}$$

где $R_{\rm H}^i,\ R_{\rm B}^i$ – внутренние радиусы в нижнем и верхнем сечении і-го пояса, мм.

Д.2 Измерения высот поясов резервуара

Д.2.1 Высоту i-го пояса резервуара (рисунок А.7), как расстояние по вертикали от верхнего края i-го пояса резервуара, h_i , мм, вычисляют по формуле

$$h_{i} = \frac{\left(th'_{i+1} - th'_{i}\right) + \left(th''_{i+1} - th''_{i}\right)}{2}, \tag{Д.11}$$

где th'_i , th''_i — высота превышения і-го пояса (рисунок А.4), на образующей и противоположной образующей значение которого принимают из таблицы Б.3. мм:

 th_{i+1} — высота превышения вышестоящего i+1-го пояса (рисунок A.7), значение которого принимают из таблицы Б.5. мм.

Д.3 Вычисление вместимости «мертвой» полости

Д.3.1 Объем неровностей днища $\left(\Delta V_{\rm дH}\right)_{\rm 0}$ вычисляют по формуле

$$\left(\Delta V_{\text{дH}}\right)_0 = \frac{\pi D_1^2}{4 \cdot 10^9} \begin{pmatrix} 0,005104f_1 + 0,02281f_2 + 0,03863f_3 + \\ +0,05455f_4 + 0,07038f_5 + 0,08513f_6 + \\ +0,10018f_7 + 0,11645f_8 \end{pmatrix},$$
 (Д.12)

где f_1, f_2, \dots, f_8 – превышение высот призмы в точке между концентрическими окружностями неровностей днища, вычисляемые по формуле

ФГУП «ВНИИР» Страница 32 из 38

$$f_j = \sum_{t=1}^{8} (b_{(j-1)t} - b_{jt}),$$
 (Д.13)

где b_j — высота превышения призмы, установленной по периметру j-й концентрической окружности;

 b_{j-1} — высота превышения призмы, установленной по периметру (j - 1)-й вышележащей концентрической окружности.

Д.3.2 Уровень жидкости $H_{\rm MR}$, мм, соответствующий высоте «мертвой» полости вычисляют по формуле

$$H_{M\Pi} = H_{\delta} - th_{M\Pi}, \tag{Д.14}$$

где H_{6} – базовая высота, измеренная по 10.2, её значение принимают из таблицы Б.3, мм;

 $th_{{\sf M}{\sf \Pi}}$ – высота превышения среза ПРУ, значение принимают по таблице Б.7 (графа 2), мм.

Д.3.3 Вместимость «мертвой» полости $V_{\rm MR}$ вычисляют по формуле

$$V_{\mathsf{M}\mathsf{\Pi}} = V_{\mathsf{M}\mathsf{\Pi}}' - \left(\Delta V_{\mathsf{Д}\mathsf{H}}\right)_{\mathsf{0}},\tag{Д.15}$$

где $\left(V_{\text{дн}}\right)_0$ – объем неровностей днища, вычисляемый по формуле (Д.12), м³;

 $V_{\mathtt{M}\mathtt{\Pi}}^{\prime}$ – вместимость «мертвой» полости в пределах $H_{\mathtt{M}\mathtt{\Pi}}$, вычисляемая по формуле

$$V'_{M\Pi} = \frac{\pi D_1^2}{4 \cdot 10^9} \cdot H, \tag{Д.16}$$

где D_1 – внутренний диаметр 1-го пояса, вычисляемый по формуле (Д.10), мм;

Н – уровень жидкости, отсчитываемый от точки касания днища грузом рулетки, мм;

Д.4 Вычисление посантиметровой вместимости 1-го пояса резервуара

Д.4.1 Посантиметровую вместимость 1-го пояса от точки касания днища грузом рулетки до уровня H_1 , соответствующий высоте 1-го пояса, вычисляют по формуле

$$V(H)_1 = V_{M\Pi} + \frac{\pi D_1^2}{4 \cdot 10^9} (H - H_{M\Pi}) + \Delta V_{B.d},$$
 (Д.17)

ФГУП «ВНИИР» Страница 33 из 38

где $V_{\rm M\Pi}$ – вместимость «мертвой» полости, вычисляемая по формуле (Д.15), м³;

 D_1 – внутренний диаметр 1-го пояса, вычисляемый по формуле (Д.10), мм;

Н – уровень жидкости, отсчитываемый от точки касания днища грузом рулетки, мм;

 $H_{\text{мп}}$ – уровень жидкости, соответствующий высоте «мертвой» полости формуле (Д.14) , мм.

 $\Delta V_{\mathrm{B.D.}}$ – объем внутренней детали, определяемый по 10.6, м³.

Д.5 Вычисление посантиметровой вместимости і-го пояса резервуара

Посантиметровую вместимость резервуара i-го пояса $V(H)_i$ вычисляют по формуле

$$V(H)_i = V(H)_{i-1} + \frac{\pi D_i^2}{4 \cdot 10^8} (H - H_{i-1}),$$
 (Д.18)

где $V(H)_{i-1}$ – посантиметровая вместимость резервуара, соответствующая уровню H_{i-1} , M^3 ;

H – уровень жидкости, соответствующий, отсчитываемый от точки касания днища грузом рулетки, см;

 H_{i-1} – уровень жидкости, соответствующий суммарной высоте поясов, см;

 D_i – внутренний диаметр *i*-го пояса, вычисляемый по формуле (Д.10), мм.

ФГУП «ВНИИР»

ПРИЛОЖЕНИЕ Е

Форма титульного листа градуировочной таблицы и форма градуировочной таблицы

Г.1 Форма титульного листа градуировочной таблицы¹ **УТВЕРЖДАЮ** «___» _____ 201_ r. ГРАДУИРОВОЧНАЯ ТАБЛИЦА на резервуар стальной вертикальный цилиндрический теплоизолированный РВСтип_____ Организация Погрешность определения вместимости: Срок очередной поверки_____ Поверитель подпись должность, инициалы, фамилия

ФГУП «ВНИИР» Страница 35 из 38

¹ Форма градуировочной таблицы не подлежит изменению

Г.2 Форма градуировочной таблицы резервуара

Организация	
Резервуар №	

Таблица Г.2 – Посантиметровая вместимость резервуара

Уровень наполнения, см	Вместимость, м³	Коэффициент вместимости, м ³ /мм		
Н _{мп}				
H _{Mn} +1				
H _{MП} +2				
*				
H_{np}				

Т а б л и ц а Γ .3 — Средняя вместимость в пределах вместимости, приходящейся на 1 см высоты наполнения i-го пояса

Уровень наполнения , мм	Вместимость , м ³	Уровень наполнения . мм	Вместимость , м ³	Уровень наполнения	Вместимость , м ³
1		4		, MM 7	
2		5		8	
3		6		9	

ФГУП «ВНИИР» Страница 36 из 38

ПРИЛОЖЕНИЕ Ж

Форма акта измерений базовой высоты резервуара

УТВЕРЖДАЮ

Руководитель предприятия - владельца резервуара (директор, гл. инженер)

AKT

изме	рений базовой высоты	резервуа	ра		
	OT «»	r.			
Составлен в том, что комисси	ия, назначенная приказом	по	наименование		
предприятия - владельца резервуара	, в составе п	редседате	еля		
инициалы, фамилия	и членов:	ини	циалы, фамилии		
провела контрольные изм	эрония базорой высоты				
цилиндрического теплоизолиров					
при температуре окружающе					
Измерения проведены рулет			со сроком		
действия поверки до «» _	20 г.				
Результаты измерений предс	тавлены в таблице Ж.1.				
Таблица Ж.1			В миллиметрах		
Базовая выс	ота резервуара				
Среднее арифметическое	Значение базовой вы	соты,	Уровень жидкости в резервуаре		
значение результатов двух	установленное при калі	ибровке			
измерений $(H_6)_{\kappa}$	резервуара (H_{6})) _n			
1	2		3		
Относительное изменение ба $\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100, \ r_{\mu}$	де значения величин (H б) $_k$, (<i>Н</i> 6)п, при	ведены в 1-й, 2-й графах.		
<u>Вывод</u> – требуется (не требуе	ется) внеочередная калибі	ровка резе	ервуара.		
	Председатель комиссии				
	-	подпись	инициалы, фамилия		
	Члены комиссии:				
	_	подпись	инициалы, фамилия		
	-	подпись	инициалы, фамилия		

ФГУП «ВНИИР» Страница 37 из 38

БИБЛИОГРАФИЯ

- [1] Тахеометр электронный Leica FlexLine TS02 plus 3" R500, Госреестр № 65933-16
- [2] ТУ ДКТЦ 41344.1.1.102 Анализатор-течеискатель АНТ-3. Технические условия
- [3] РД-03-20-2007 Положение об организации обучения и проверки знаний рабочих организаций, поднадзорных федеральной службе по экологическому, технологическому и атомному надзору.
- [4] Приказ от 2 июля 2015 г. № 1815 «Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»