ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Карелия-Упофлор СиАйЭс»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Карелия-Упофлор СиАйЭс» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК) с функциями информационно-вычислительного комплекса электроустановки (ИВКЭ), включающий в себя сервер с программным обеспечением (ПО) «АльфаЦЕНТР», устройство синхронизации времени (УСВ), каналообразующую аппаратуру, автоматизированное рабочее место (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы соответствующего GSM-модема, далее по каналам связи стандарта GSM поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Также сервер может принимать измерительную информацию в виде xml-файлов установленного формата от ИВК прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, и передавать всем заинтересованным субъектам оптового рынка электроэнергии (OPЭ).

Передача информации от сервера в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта ОРЭ, в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется посредством отправки по протоколу SMTP по каналу связи сети Internet в виде хml-файлов установленного формата в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера и УСВ.

Сравнение показаний часов сервера с УСВ осуществляется в автоматическом режиме каждые 30 мин. Корректировка часов сервера выполняется при расхождении показаний часов сервера с УСВ на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время сеанса связи со счетчиками. Корректировка часов счетчиков выполняется автоматически при расхождении показаний часов счетчиков с часами сервера на величину более ± 1 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ac_metrology.dll	
Номер версии (идентификационный номер) ПО	не ниже 15.07	
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

Номер ИК	Наименование точки измерений	Измерительные компоненты					Метрологические характеристики ИК		
		TT	ТН	Счетчик	УСВ	Сервер	энер-	Границы допускае- мой основ- ной отно- сительной погрешно- сти (±δ), %	Границы допускае-мой относительной погрешности в рабочих условиях (±8), %
1	ПС 110 кВ Кир- пичная, РУ-10кВ, 2 Сек 10кВ, яч.12, КЛ-10кВ №12	ТОЛ-10-1 Кл.т. 0,5 300/5 Рег. № 15128-96	НАМИТ-10 Кл.т. 0,5 10000/100	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0	УСВ-2 - Рег. № 41681-09	HP DL380 G7 E	Ак-тивная	1,3	3,3 5,7
		Фазы: A; C	Рег. № 16687-97 Фазы: ABC	Per. № 36697-17			Реак- тивная	2,5	3,7
2	ПС 110 кВ Кир- пичная, РУ-10кВ, 1 Сек 10кВ, яч.1, КЛ-10кВ №1	ТОЛ-10-1 Кл.т. 0,5 300/5 Рег. № 15128-96	НАМИТ-10 Кл.т. 0,5 10000/100 Рег. № 16687-97	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-17			Ак- тивная Реак-	1,3 2,5	3,3 5,7
Пиоток		Фазы: А; С	Фазы: АВС				тивная		
предел	ны допускаемой пог	решности СОЕВ ±	:J U.						

Примечания:

- В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos i = 0.8$ инд.
- Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	2
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Ином	от 90 до 110
ток, % от Іном	от 5 до 120
коэффициент мощности cosф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды в месте расположения ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от 0 до +40
температура окружающей среды в месте расположения сервера, °С	от +15 до +20
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	220000
среднее время восстановления работоспособности, ч для УСВ:	2
среднее время наработки на отказ, ч, не менее	35000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	113
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика: параметрирования; пропадания напряжения; коррекции времени в счетчике.
- журнал сервера: параметрирования; пропадания напряжения; коррекции времени в счетчике и сервере; пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование: счетчика электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки; сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Tuosingu i Rombiermootis imme Ro		Количество,
Наименование	Обозначение	шт./экз.
Трансформаторы тока	ТОЛ-10-1	4
Трансформаторы напряжения	НАМИТ-10	2
Счетчики электрической энергии многофункциональные	СЭТ-4TM.03М	2
Устройства синхронизации времени	УСВ-2	1
Сервер	HP DL380 G7 E	1
Методика поверки	МП ЭПР-235-2020	1
Формуляр	МЭС.695000.029.ФО	1

Поверка

осуществляется МΠ ПО документу ЭПР-235-2020 «Система автоматизированная информационно-измерительная (АИИС КУЭ) коммерческого учета электроэнергии «Карелия-Упофлор 000СиАйЭс» Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 07.02.2020 г.

Основные средства поверки:

- в соответствии с методиками поверки средств измерений, входящих в состав АИ-ИС КУЭ;
- радиочасы МИР РЧ-02 (регистрационный номер в Федеральном информационном фонде 46656-11);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);

- вольтамперфазометр ПАРМА ВАФ&-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «Карелия-Упофлор СиАйЭс», свидетельство об аттестации № 269/RA.RU.312078/2020.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Карелия-Упофлор СиАйЭс»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Межрегионэнергосбыт» (АО «МЭС»)

ИНН 6950003956

Адрес: 170100, г. Тверь, ул. Вольного Новгорода, д. 15, оф. 25

Web-сайт: <u>www.mrenergo.ru</u> E-mail: <u>mail@mrenergo.ru</u>

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
			2020
	Мπ	// \\	2020 г