Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Омской области» (ФБУ «Омский ЦСМ»)

УТВЕРЖДАЮ:

И.о. директора ФБУ «Омский ЦСМ»

А.В. Бессонов МПБ

мине с ком образования и предоставляющий предоставляющий

Государственная система обеспечения единства измерений Резервуары горизонтальные стальные

МЕТОДИКА ПОВЕРКИ

ОЦСМ 088196-2019 МП

РАЗРАБОТЧИКИ:

Начальник отдела поверки и калибровки средств измерений механических величин ФБУ «Омский ЦСМ»

Д.Б. Шестаков

Ведущий инженер по метрологии ФБУ «Омский ЦСМ»

__ Д.А. Воробьев

г. Омск 2019 г.

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на резервуары горизонтальные стальные зав. №№1012, 1022, 1023, принадлежащие ФГКУ «ПУ ФСБ России по Омской области» (далее по тексту резервуары), и устанавливает методику их первичной и периодической поверок.
- 1.2 На первичную поверку следует предъявлять резервуары до ввода в эксплуатацию и после ремонта, а также при изменении базовой высоты резервуара более, чем на 0,1 %.
- 1.3 На периодическую поверку следует предъявлять резервуары в процессе эксплуатации.
- 1.4 Периодичность поверки в процессе эксплуатации устанавливается потребителем с учетом условий и интенсивности эксплуатации, но не реже одного раза в пять лет.

2 Операции поверки

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1. Таблица 2.1

	Номер пункта методики поверки	Проведение операции при	
Наименование операции		первичной поверке	периодической поверке
Внешний осмотр	8.1	Да	Да
Измерение базовой высоты резервуара до определения вместимости	8.2	Да	Да
Определение вместимости резервуара	8.3	Да	Да
Измерение базовой высоты после определения вместимости	8.4	Да	Да
Измерение максимального уровня жидкости в резервуаре	8.5	Да	Да
Обработка результатов измерений	8.6	Да	Да
Составление градуировочной таблицы	8.7	Да	Да

3 Средства поверки

3.1 При проведении поверки погрешности измерений параметров резервуаров не должны превышать значений, указанных в таблице 3.1. Таблица 3.1

Измеряемый параметр	Пределы допускаемой погрешности измерений
Объем дозы жидкости при градуировке	± 0,15 %
Уровень жидкости	± 1,0 mm
Температура жидкости, °С	± 0,2 °C
Температура воздуха	± 1,0 °C
Давление жидкости (избыточное)	± 0,4 %

- 3.2 При соблюдении указанных в таблице 3.1 пределов допускаемых погрешностей измерений допускаемая относительная погрешность определения вместимости (градуировочной таблицы) резервуара находится в пределах ± 0.25 %.
- 3.3 При проведении поверки применяют основные и вспомогательные средства поверки, приведенные в таблице 3.2.

Таблица 3.2

Номер пункта	Наименование и тип основного или вспомогательного средства поверки; обозначение
методики	нормативного документа, регламентирующего основные технические требования и (или)
поверки	метрологические и основные технические характеристики средства поверки
8.2-8.5	Рулетка измерительная металлическая Р10У2Г (рег. №51171-12):
	до 10 м, КТ 2

Продолжение таблицы 3.2

Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего основные технические требования и (или) метрологические и основные технические характеристики средства поверки
8.3	Комплекс градуировки резервуаров «Зонд» (рег. №17906-98): от 10 до 4000 мм; Δ : ± 1,0 мм; 200 дм ³ /мин; δ : ± 0,15 %.
8.3	Термометр ртутный стеклянный лабораторный ТЛ-4 (рег. №303-91): от 0 до +55 °C; ЦД 0,1 °C; КТ 1
8.3	Ареометр общего назначения АОН-1 (рег. №27442-04): от 790 до 860 кг/м³ при 20 °С; 1-ый разряд
7, 8	Прибор комбинированный Testo 622 (рег. 53505-13): от -10 до +60 °C; Δ : \pm 0,4 °C; от 10 до 95 %; Δ : \pm 3 %;

Примечание – В таблице приняты следующие обозначения:

КТ - класс точности;

- А пределы допускаемой абсолютной погрешности измерений, единица величины;
- δ пределы допускаемой относительной погрешности измерений, %.
- 3.4 Эталоны единиц величин, используемые при поверке, должны быть аттестованы в установленном порядке. Средства измерений, используемые при поверке, должны быть поверены в установленном порядке.
- 3.5 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик резервуаров с требуемой точностью.

4 Требования к квалификации поверителей

К поверке резервуаров допускаются поверители организаций, аккредитованных в установленном порядке, изучившие настоящую методику поверки, эксплуатационную документацию на резервуары и средства поверки.

5 Требования безопасности

- 5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ Р 12.0.001-2013 и ГОСТ 31610.0-2014.
- 5.2 Перед началом работ проверяют исправность лестниц и перил резервуара (при наличии), наличие заземления резервуара.
- 5.3 Базовую высоту резервуара или уровень поверочной жидкости в нем измеряют через измерительный люк. После измерений крышку измерительного люка плотно закрывают.
 - 5.4 Избыточное давление в газовом пространстве резервуара должно быть равно нулю.
- 5.5 Содержание вредных паров и газов в воздухе вблизи и внутри резервуара на высоте 1000 мм не должно превышать санитарных норм, установленных ГОСТ 12.1.005-88.
- 5.6 Для освещения в темное время суток применяют светильники во взрывозащищенном исполнении.

6 Условия поверки

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха и поверочной жидкости, °C

от +5 до +35;

- относительная влажность воздуха, %, не более

- 80.
- 6.2 После наполнения резервуаров жидкостью для определения вместимости исключают возможность попадания воздуха в измерительную систему.
- 6.3 Процесс определения вместимости резервуара должен идти непрерывно (без перерывов, приводящих к изменению объема и уровня жидкости в резервуаре), начиная с уровня, равного нулю, до предельного уровня или уровня определенной дозы.
- 6.4 Резервуары должны быть освобождены и очищены от остатков хранившейся жидкости.

7 Подготовка к поверке

- 7.1 Основные и вспомогательные средства поверки подготавливают к работе в соответствии с требованиями их эксплуатационной документации.
 - 7.2 Перед проведением поверки выполняют следующие подготовительные работы:
- 7.2.1 Проводят технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75.
 - 7.2.2 Устанавливают уровнемер на горловине резервуара.
- 7.2.3 Опускают шланг с расширителем струи внутрь резервуара. При этом нижний торец расширителя струи должен находиться выше нижней образующей резервуара на 2 см.
- 7.2.4 Поверочную жидкость при поверке резервуара подают в комплекс градуировки резервуаров «Зонд» (далее по тексту комплекс) следующими способами:
 - из приемного резервуара с помощью насоса;
- из технологического (при применении нефтепродуктов) трубопровода или водопровода (при применении воды) с помощью насоса или без него.

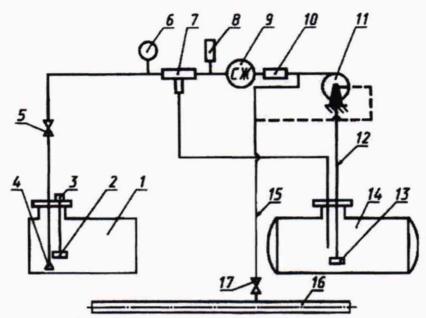
8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра проверяют:
- соответствие конструкции и внутренних деталей резервуара проектной и технической документации;
 - наличие необходимой арматуры и оборудования;
- отсутствие коррозионных повреждений, царапин, трещин, прожогов, оплавлений, расслоений на стенке и днищах.
- 8.1.2 По внешнему виду сварные швы днищ и стенки резервуара должны удовлетворять следующим требованиям:
 - по форме и размерам швы должны соответствовать проектной документации;
 - швы должны иметь гладкую или равномерно чешуйчатую поверхность;
 - металл шва должен иметь плавное сопряжение с основным металлом;
- швы не должны иметь недопустимых внешних дефектов. К недопустимым внешним дефектам сварных соединений конструкции резервуара относятся трещины любых видов и размеров, несплавления, наплывы, грубая чешуйчатость, наружные поры и цепочки пор, прожоги и свиши.
- 8.1.3 Результат внешнего осмотра считать положительным, если соблюдаются вышеперечисленные требования.

8.2 Измерение базовой высоты резервуара до определения вместимости

- $8.2.1\,$ Базовую высоту резервуара перед наполнением $H_{6\,1}$, мм, измеряют при помощи рулетки через измерительный люк в точке, расположенной на плоскости, проходящей через верхнюю образующую и продольную ось резервуара, или через измерительную трубу не менее двух раз.
 - 8.2.2 Расхождение между результатами двух измерений должно быть не более 2 мм.


8.3 Определение вместимости резервуара

- 8.3.1 Проводят сборку и подключение комплекса в соответствии с схемой, приведенной на рисунке 8.1.
- 8.3.2 Предварительно вычисляют предельный уровень наполнения резервуара $H_{\rm пp}$,мм, по формуле:

$$H_{\rm np} = H_{\rm BH} - t, \tag{8.1}$$

где $H_{\rm BH}$ — высота внутренней полости резервуара, мм;

- t глубина заложения горловины, мм.
- 8.3.3 Открывают вентиль 5.
- 8.3.4 Устанавливают указатели шкал приборов (при необходимости) на нулевую отметку.

- 1 Поверяемый резервуар; 2 Поплавок уровнемера; 3 Уровнемер; 4 Расширитель струи;
- 5, 17 Вентили; 6 Манометр; 7 Трехходовой кран; 8 Термометр (измеритель температуры);
- 9 Счетчик жидкости; 10 Дроссель; 11 Насос; 12 Всасывающая линия насоса; 13 Фильтр;
- 14 Приемный резервуар; 15 Линия технологической обвязки; 16 Технологический трубопровод (водопровод)

Рисунок 8.1 – Схема подключения комплекса

- 8.3.5 Снимают показание счетчика жидкости 9 $q_0(N_0)$.
- 8.3.6 Переводят трехходовой кран 7 в положение «Измерение»
- 8.3.7 Поверочную жидкость подают в резервуар 1 через счетчик жидкости 9 из приемного резервуара 14 или технологического трубопровода (водопровода) 16, открывая вентиль 17.
- 8.3.8 Наполняют резервуар дозой жидкости до появления на дисплее уровнемера 3 значения 10 мм.
 - 8.3.9 Снимают показание манометра 6 p_0 .
 - 8.3.10 Снимают показание термометра (измерителя температуры) 8 $(T_T)_0$.
- 8.3.11 Выключают насос 11 или закрывают вентиль 17 и снимают показание счетчика жидкости 9 $q_1(N_1)$.
- 8.3.12 Включают насос 11 или открыть вентиль 17 и в пределах 1/20 части номинальной вместимости резервуара определяют метрологические характеристики резервуара статическим методом: при каждом изменении уровня жидкости в пределах до 30 мм прекращают подачу жидкости в резервуар. Одновременно снимают показания счетчика жидкости 9 $q_j(N_j)$, уровнемера 3 H_J манометра 6 p_j и термометра (измерителя температуры) 8 $(T_T)_j$. Отбирают пробу жидкости из резервуара и измеряют ее температуру $(T_p)_j$ и плотность ρ_0 , при этом первую пробу отбирают при достижении уровня жидкости в резервуаре 500 мм.
- В случае применения в качестве жидкости нефтепродуктов их плотность измеряют в лаборатории в соответствии с ГОСТ 3900-85, Температуру жидкости измеряют в пробоотборнике. При этом термометры погружают в жидкость, находящуюся в пробоотборнике, на глубину, указанную в техническом паспорте на данные термометры, и выдерживают в пробе до принятия столбиком ртути постоянного положения. Не вынимая термометры из жидкости, измеряют температуру.
- 8.3.13 При достижении уровня жидкости, соответствующего 1/20 части номинальной вместимости резервуара, наполнение резервуара дозами жидкости может быть осуществлено динамическим или статическим методом.
- 8.3.14 После наполнения резервуара дозами жидкости в пределах 19/20 частей номинальной вместимости резервуара поверку его проводят до предельного уровня, вычисляемого по формуле (8.1), статическим методом измерений в соответствии с п.8.3.12.

8.4 Измерение базовой высоты после определения вместимости

- 8.4.1 Базовую высоту резервуара после наполнения $H_{6\,2}$, мм, измеряют при помощи рулетки через измерительный люк в точке, расположенной на плоскости, проходящей через верхнюю образующую и продольную ось резервуара, или через измерительную трубу не менее двух раз.
 - 8.4.2 Расхождение между результатами двух измерений должно быть не более 2 мм.
 - 8.4.3 Значение H_{62} не должно отличаться от H_{61} более чем на 0,1 %.

8.5 Измерение максимального уровня жидкости в резервуаре

- 8.5.1 Максимальный уровень жидкости в резервуаре $H_{\rm p\,max}$, мм, измеряют после прекращения подачи доз поверочной жидкости в резервуар и выдержки в течение 15 мин при помощи рулетки не менее двух раз.
 - 8.5.2 Расхождение между результатами двух измерений не должно быть более 2 мм.
- 8.5.3 За действительные значения максимального уровня принимают среднее арифметическое значение двух измерений.

8.6 Обработка результатов измерений

- 8.6.1 Объем j-й дозы жидкости (ΔV^c) $_j$, дм 3 , прошедший через счетчик жидкости, вычисляют по формуле:
 - 8.6.1.1 С непосредственным отсчетом объема жидкости в дм³:

$$(\Delta V_1^c)_i = q_i - q_{i-1}; (8.2)$$

8.6.1.2 С импульсным выходным сигналом в импульсах:

$$(\Delta V_2^c)_j = \frac{N_j - N_{j-1}}{K}; (8.3)$$

8.6.1.3 с непосредственным отсчетом объема жидкости со сдвигом дозирования в дм³:

$$(\Delta V_1^c)_j^* = (q_j - q_{j-1}) \cdot K_c, \tag{8.4}$$

где q_j, q_{j-1} – показания счетчика жидкости, дм³;

 N_i , N_{i-1} – показания счетчика жидкости, имп.;

К – коэффициент преобразования счетчика жидкости, имп./дм³;

 K_c —поправочный коэффициент, значение которого для счетчика жидкости со сдвигом дозирования и проскоком вычисляют по формуле:

$$K_c = 1 + 0.005 \cdot C,$$
 (8.5)

где C – средний сдвиг дозирования, дм³.

8.6.2 Объем налитой в резервуар j-й дозы жидкости $(\Delta V_p^c)_j$, м³, соответствующей изменению уровня ее в резервуаре в пределах от 10 до 30 мм, определяют по формуле:

$$(\Delta V_{p}^{c})_{j} = \frac{(\Delta V^{c})_{j}}{10^{3}} \cdot \{1 + \beta_{j} \cdot [(T_{p})_{j} - (T_{c})_{j}]\} \cdot [1 + \gamma \cdot (p_{j} - \frac{10^{-6}}{2} \cdot \rho_{j} \cdot g \cdot H_{j})],$$
 (8.6)

где $(\Delta V^c)_j$ – объем j-й дозы жидкости, определяемый по формулам (8.2)-(8.4), дм³;

 eta_j — коэффициент объемного расширения жидкости (для воды $eta_j=200\cdot 10^{-6},$ для нефтепродуктов — $eta_j=\frac{1,825}{
ho_i}$ — 0,001315), °C⁻¹;

 $(T_{\rm p})_j$ – температура жидкости в резервуаре после налива в него j-й дозы жидкости, °C;

 $(T_c)_j$ – температура j-й дозы жидкости в счетчике, °C;

 γ — коэффициент сжимаемости жидкости (для воды $\gamma = 49 \cdot 10^{-5}$, для нефтепродуктов — по РД 153-39-011-97), МПа⁻¹;

 $p_{\rm i}$ – избыточное давление жидкости в счетчике жидкости, МПа;

 $ho_{\rm j}$ – плотность жидкости ($ho_{\rm j}=
ho_{\rm j-1}\cdot\left\{1-eta_{\it j}\cdot\left[(T_{
m p})_{\it j}-(T_{
m p})_{\it j-1}
ight]
ight\}$), кг/м³;

g – ускорение свободного падения, м/с²;

 H_i – уровень жидкости в резервуаре, м.

Объем налитой в резервуар начальной дозы жидкости $\left(\Delta V_{\rm p}^{c}\right)_{0}$, м³, определяют 8.6.3 по формуле:

 $\left(\Delta V_{\rm p}^{c}\right)_{0} = \frac{(\Delta V^{c})_{0}}{10^{3}} \cdot \left\{1 + \beta_{0} \cdot \left[(T_{\rm p})_{0} - (T_{c})_{0} \right] \right\} \cdot \left[1 + \gamma \cdot \left(p_{0} - \frac{10^{-6}}{2} \cdot \rho_{0} \cdot g \cdot H_{0}\right) \right],$ (8.7) $\beta_{0} - \text{коэффициент объемного расширения жидкости (для воды } \beta_{0} = 200 \cdot 10^{-6},$

для нефтепродуктов – $\beta_0 = \frac{1,825}{\rho_0} - 0,001315$), °C⁻¹;

 $(T_{\rm p})_0$ – температура жидкости в резервуаре в момент отбора первой пробы жидкости из резервуара, °С;

 $(T_c)_0$ – температура j-й дозы жидкости в трубопроводе, °С.

Базовую высоту резервуара H_6 , мм, определяют по формуле: $H_{\rm p\,\it max} = \frac{H_{6\,1} - H_{6\,2}}{2}.$

$$H_{\text{p max}} = \frac{H_{61} - H_{62}}{2}.\tag{8.8}$$

Максимальный уровень жидкости $H_{\rm p\,\it max}$, мм, определяют по формуле: 8.6.5

$$H_{p \, max} = \frac{(H_{p \, max})_1 + (H_{p \, max})_2}{2}. \tag{8.9}$$

Разность максимальных уровней жидкости в резервуаре ΔH , мм, измеренных в конце поверки уровнемером и измерительной рулеткой с грузом, определяют по формуле:

$$\Delta H = H_{\text{p max}} - H_{\text{y max}},\tag{8.10}$$

 $H_{
m p\,\it max}$ — максимальный уровень жидкости, измеренный рулеткой, мм; где

 $H_{y max}$ – максимальный уровень жидкости, измеренный уровнемером, мм.

- Объемы доз определяют по формуле (8.6) без поправок на давление и температуру, если выполняются следующие условия:
 - 8.6.7.1 При применении воды:

$$\left| p_{j} - \frac{10^{-6}}{2} \cdot \rho_{j} \cdot g \cdot H_{j} \right| \le 0.5 \text{ M}\Pi \text{a}; \left| (T_{p})_{j} - (T_{c})_{j} \right| \le 2.0 \text{ °C}.$$

При применении нефтепродуктов: 8.6.7.2

$$\left| p_{j} - \frac{10^{-6}}{2} \cdot \rho_{j} \cdot g \cdot H_{j} \right| \le 0.3 \text{ M}\Pi\text{a}; \left| (T_{p})_{j} - (T_{c})_{j} \right| \le 0.5 \,^{\circ}\text{C}.$$

Дозовую вместимость резервуара при наливе в него k доз жидкости V_k , M^3 , определяют по формуле:

$$V_{k} = \sum_{j=0}^{k} (\Delta V_{p})_{j} \cdot \{1 + \beta_{j} \cdot [(T_{p})_{k} - (T_{p})_{j}]\} \cdot \{1 + \beta_{p} \cdot [20 - (T_{cT}^{p})_{k}]\}, \tag{8.11}$$

k – число налитых в резервуар доз жидкости; где

j – номер налитой дозы (выбирают из ряда j=0,1,2,...,k);

 $(\Delta V_{\rm p})_{i}$ – объем j-й дозы, измеренный счетчиком жидкости при статическом методе поверки и определенный по формуле (8.6), м³;

 $(T_{\rm p})_k$ – температура жидкости в резервуаре при наливе в него k доз, °C;

 $(T_p)_j$ – температура жидкости в резервуаре при наливе в него j-й дозы, °C;

 β_{j} – коэффициент объемного расширения жидкости (для воды $\beta_{j} = 200 \cdot 10^{-6}$, для нефтепродуктов – $\beta_j = \frac{1,825}{\rho_i}$ – 0,001315), °C⁻¹;

 $\beta_{\rm p}$ – коэффициент объемного расширения материала резервуара ($\beta_{\rm p}=37.5\cdot 10^{-6}$), °С⁻¹;

 $(T_{\rm cr}^{\rm p})_k$ — температура стенки резервуара $((T_{\rm cr}^{\rm p})_k=(T_{\rm p})_k),$ °C.

Значение k принимают равным 0 при наливе в резервуар начальной дозы $(\Delta V_p)_{o}$;

k = 1 – при наливе дозы $(\Delta V_{\rm p})_{\star}$;

k = 2 – при наливе дозы $(\Delta V_p)_2;...;$

k = N – при наливе дозы $(\Delta V_p)_{M}$.

- 8.6.9 Дозовую вместимость резервуара определяют по формуле (8.11) без поправки на температуру, если выполняются следующие условия:
 - 8.6.9.1 При применении воды:

$$|(T_{\rm p})_k - (T_{\rm p})_j| \le 2.0 \,{\rm ^{\circ}C}; \, |20 - (T_{\rm cr}^{\rm p})_k| \le 2.0 \,{\rm ^{\circ}C}.$$

8.6.9.2 При применении нефтепродуктов:

$$|(T_{\rm p})_k - (T_{\rm p})_j| \le 0.5 \,{}^{\circ}{\rm C}; |20 - (T_{\rm cr}^{\rm p})_k| \le 0.5 \,{}^{\circ}{\rm C}.$$

8.7 Составление градуировочной таблицы

8.7.1 Градуировочную таблицу составляют (начиная от плоскости, принятой за начало отсчета, до предельного уровня наполнения $H_{\rm np}$) с шагом $\Delta H=1$ см, используя формулу:

$$V_i = V_k + \Delta V_1 \cdot \left(\frac{H_i - H_k}{H_{k+1} - H_k}\right) + \frac{\Delta V_2 - \Delta V_{-1}}{4} \cdot \left(\frac{H_i - H_k}{H_{k+1} - H_k}\right) \cdot \left(\frac{H_i - H_k}{H_{k+1} - H_k} - 1\right), \tag{8.12}$$

где $\Delta V_1 = V_{k+1} - V_k$, $\Delta V_2 = V_{k+2} - V_{k+2}$, $\Delta V_{-1} = V_k - V_{k-1}$;

 $V_{k-1}; V_k; V_{k+1}; V_{k+2}$ – дозовые вместимости резервуара при наливе в него k-1, k, k+1, k+2 доз жидкости, соответствующие уровням наполнения $H_{k-1}; H_k; H_{k+1}; H_{k+2}, M^3;$

 H_i – текущий уровень наполнения резервуара, мм.

- 8.7.2 При составлении градуировочной таблицы значения сантиметровой вместимости резервуара округляют до целого числа при расчете в дм³, до третьего знака после запятой при расчете в м³.
- 8.7.3 В пределах каждого шага (изменения уровня наполнения резервуара на 1 см) вычисляют коэффициент вместимости θ_i , равный вместимости, приходящейся на 1 мм высоты наполнения, по формуле:

$$\Theta_i = \frac{V_i - V_{i-1}}{10},\tag{8.13}$$

где V_i , V_{i-1} – вместимости резервуара, соответствующие уровням H_i , H_{i-1} . M^3 .

- 8.7.4 Значения посантиметровой вместимости резервуара, указанные в градуировочных таблицах, соответствуют температуре 20 °C.
- 8.7.5 Обработка результатов поверки может быть проведена ручным способом или с использованием ЭВМ. Требования к машинному алгоритму обработки результатов измерений:
- вместимость резервуара, приходящуюся на 1 см высоты наполнения, вычисляют последовательным суммированием значений вместимостей, приходящихся на 1 мм высоты наполнения;
- последовательно суммируя значения вместимостей каждого миллиметра наполнения, вычисляют вместимость резервуара с интервалом 1 см.

9 Оформление результатов поверки

- 9.1 Результаты поверки оформляются протоколом поверки свободной формы.
- 9.2 При положительных результатах поверки выдается свидетельство о поверке установленного образца.
 - 9.3 К свидетельству о поверке прилагают:
 - градуировочную таблицу;
 - протокол поверки.
- 9.4 При отрицательных результатах поверки выдается извещение о непригодности установленного образца.