ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Производственная компания «ДИА»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Производственная компания «ДИА» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), устройства измерения напряжения в высоковольтной сети (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий сервер баз данных (сервер БД) типа DEXP Atlas H141 с установленным программным обеспечением (ПО) «АльфаЦЕНТР», устройство синхронизации времени (УССВ) типа УССВ-2, локальновычислительную сеть, автоматизированные рабочие места (АРМ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, технические средства для обеспечения локальной вычислительной сети (ЛВС) и разграничения доступа к информации.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с. активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин.;
- средняя на интервале времени 30 мин. активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на соответствующий модем и далее по каналам связи стандарта GSM — на сервер БД, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Сервер БД раз в сутки формирует и отправляет по каналу связи с протоколом TCP/IP сети Internet с помощью электронной почты отчеты в виде xml-файлов на APM энергосбытовой организации – субъекта оптового рынка электроэнергии (мощности).

Передача информации в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется с АРМ энергосбытовой организации. Передача данных осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хмІфайлов установленного формата в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мошности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя УССВ на основе ГЛОНАСС/GPS-приемника точного времени, часы сервера БД и счетчиков. Синхронизация встроенных часов оборудования АИИС КУЭ осуществляется УССВ типа УССВ-2, принимающего и синхронизирующего собственное время по сигналам времени, получаемым от спутников навигационных систем ГЛОНАСС/GPS. Время сервера БД ИВК синхронизировано со временем приемника, сличение 1 раз в 30 минут. Синхронизация осуществляется при расхождении показаний часов приемника и сервера БД на ± 1 с. Сличение времени часов счетчиков с временем часов сервера осуществляется во время сеанса связи, но не реже чем раз в сутки, корректировка времени часов счетчиков выполняется при достижении расхождения со временем часов сервера ± 2 с.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню - «средний» в соответствии с Р 50.2.077-2014. Идентификационные признаки ПО приведены в таблице 1.

Таблина	1 _	Илентификационные признаки	ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ac_metrology.dll	
Номер версии (идентификационный номер) ПО	15.10.02	
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54	
Алгоритм вычисления цифрового идентификатора ПО	MD5Checker	

Метрологические и технические характеристики

Состав измерительных каналов приведен в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

	аблица 2 - Состав измерительных каналов АИИС КУЭ Состав измерительного канала				
Номер ИК	Наименование измерительного канала	Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	УССВ/ Сервер
1	2	3	4	5	6
1	ПС 110 кВ Латекс, ЗРУ-6 кВ, 1 СШ 6 кВ, яч. 19	ТОЛ-НТЗ Кл. т. 0,5 Ктт=100/5 Рег.№ 69606-17	НТМИ-6 Кл. т. 0,5 Ктн=6000/100 Рег.№ 831-53	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	
2	ПС 110 кВ Латекс, ЗРУ-6 кВ, 2 СШ 6 кВ, яч. 67	ТОЛ-НТЗ Кл. т. 0,5 Ктт=100/5 Рег.№ 69606-17	НТМИ-6 ⁽¹⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 831-53	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	
3	ПС 110 кВ Латекс, ЗРУ-6 кВ, 2 СШ 6 кВ, яч. 75	ТПЛ-10 Кл. т. 0,5 Ктт=100/5 Рег.№ 1276-59	НТМИ-6 ⁽¹⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 831-53	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	H141
4	ПС 110 кВ Волокно, ЗРУ-6 кВ, 3 СШ 6 кВ, яч. 8	ТОЛ-НТЗ Кл. т. 0,5 Ктт=300/5 Рег.№ 69606-17	НОЛ.08 ⁽²⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 3345-72	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	EXP Atlas
5	ПС 110 кВ Волокно, ЗРУ-6 кВ, 3 СШ 6 кВ, яч. 24	ТОЛ-НТЗ-10 Кл. т. 0,5 Ктт=300/5 Рег.№ 51679-12	НОЛ.08 ⁽²⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 3345-72	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	54074-13/ E
6	ПС 110 кВ Волокно, ЗРУ-6 кВ, 4 СШ 6 кВ, яч. 56	ТОЛ-НТЗ Кл. т. 0,5 Ктт=300/5 Рег.№ 69606-17	НОЛ.08 ⁽³⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 3345-72	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	YCCB-2, per. № 54074-13/ DEXP Atlas H141
7	ПС 110 кВ Волокно, ЗРУ-6 кВ, 4 СШ 6 кВ, яч. 70	ТОЛ-НТЗ-10 Кл. т. 0,5 Ктт=300/5 Рег.№ 51679-12	НОЛ.08 ⁽³⁾ Кл. т. 0,5 Ктн=6000/100 Рег.№ 3345-72	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	YCCE
8	РП-2 6 кВ, 1 СШ 6 кВ, яч. 23	ТОЛ-СЭЩ-10 Кл. т. 0,5 Ктт=300/5 Рег.№ 51143-12	НТМИ-6 Кл. т. 0,5 Ктн=6000/100 Рег.№ 831-53	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	
9	РП-18 6 кВ, 2 СШ 6 кВ, яч. 24	ТОЛ-СЭЩ-10 Кл. т. 0,5 Ктт=300/5 Рег.№ 51143-12	НОМ-6-77 Кл. т. 0,5 Ктн=6000/100 Рег.№ 17158-98	ПСЧ- 4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2. Допускается замена УССВ на аналогичное, утвержденного типа.
- 3. Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).

Продолжение таблицы 2

- 4. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ, как их неотъемлемая часть.
- 5. ⁽¹⁾ Указанные трансформаторы напряжения подключены к двум счетчикам измерительных каналов №№ 2, 3.
- 6. $^{(2)}$ Указанные трансформаторы напряжения подключены к двум счетчикам измерительных каналов №№ 4, 5.
- 7. $^{(3)}$ Указанные трансформаторы напряжения подключены к двум счетчикам измерительных каналов №№ 6, 7.

Таблица 3 – Основные метрологические характеристики АИИС КУЭ

Номер ИК	Вид электрической энергии	Границы основной погрешности ±d, %	Границы погрешности в рабочих условиях ±d, %
1-9	Активная	1,3	3,3
	Реактивная	2,1	5,7

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95
- 3. Границы погрешности результатов измерений приведены для $\cos \varphi = 0.8$, токе TT, равном 100 % от Іном для нормальных условий и при $\cos \varphi = 0.8$, токе TT, равном 5 % от Іном для рабочих условий, при температуре окружающего воздуха в месте расположения счетчиков от 0 до + 35 °C.

Таблица 4 – Основные технические характеристики АИИС КУЭ

Наименование характеристики	Значение
1	2
Количество измерительных каналов	9
Нормальные условия	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 100 до 120
- коэффициент мощности	0,9
- температура окружающей среды для счетчиков, °С	от +21 до +25
- частота, Гц	от 49,8 до 50,2
Условия эксплуатации	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности cosj (sinj)	от 0,5 $_{\rm инд.}$ до 0,8 $_{\rm емк}$
- температура окружающей среды для ТТ и ТН, °С	от -35 до +44
- температура окружающей среды для счетчиков, °С	от 0 до +35
- температура окружающей среды для сервера, °С	от +15 до + 35
- атмосферное давление, кПа	от 80,0 до 106,7
- относительная влажность, %, не более	98
- частота, Гц	от 49,6 до 50,4

Продолжение таблицы 4

продолжение тислици т	_
1	2
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
УССВ-2:	
среднее время наработки на отказ, ч, не менее	74500
среднее время восстановления работоспособности, ч	2
Сервера:	
среднее время наработки на отказ, ч, не менее	120000
среднее время восстановления работоспособности, ч	0,5
Глубина хранения информации	
Счетчики:	
ПСЧ-4ТМ.05МК.00:	
тридцатиминутный профиль нагрузки, сут, не менее	113
при отключении питания, лет, не менее	40
Сервер:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	35
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники ОРЭМ с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- в журнале событий счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;
- защита на программном уровне:
 - результатов измерений (при передаче, возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.		
	ТОЛ-НТЗ	8		
Трансформатор тока	ТОЛ-НТЗ-10	4		
трансформатор тока	ТПЛ-10	2		
	ТОЛ-СЭЩ-10	4		
	НТМИ-6	3		
Трансформатор напряжения	НОЛ.08	4		
	HOM-6-77	3		
Счетчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.00	9		
Сервер	DEXP Atlas H141	1		
УССВ	УССВ-2	1		
Документация				
Методика поверки	MΠ 26.51/28/20	1		
Паспорт-формуляр	ЦЭДК.411711.075. ПФ	1		

Поверка

осуществляется по документу МП 26.51/28/20 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Производственная компания «ДИА». Методика поверки», утвержденному ООО «Энерготестконтроль» 20.03.2020 г.

Основные средства поверки:

- средства поверки в соответствии с документами на средства измерений, входящими в состав АИИС КУЭ;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковых навигационных систем ГЛОНАСС/GPS (регистрационный номер в Федеральном информационном фонде 46656-11);
- измеритель многофункциональный характеристик переменного тока Pecypc-UF2-ПТ» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 29470-05);
- измеритель показателей качества электрической энергии Pecypc-UF2M» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 21621-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Производственная компания «ДИА», аттестованном ООО «Альфа-Энерго», аттестат аккредитации № RA.RU.311785 от 15.08.2016 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Альфа-Энерго» (ООО «Альфа-Энерго»)

ИНН 7707798605

Адрес: 119435, г. Москва, Большой Саввинский пер, д. 16, пом. 1

Телефон: +7 (499) 917-03-54

Испытательный центр

Общество с ограниченной ответственностью «Энерготестконтроль»

(ООО «Энерготестконтроль»)

Адрес: 117449, г. Москва, ул. Карьер д. 2, стр.9, помещение 1

Телефон: +7 (495) 647-88-18 E-mail: golovkonata63@gmail.com

Аттестат аккредитации ООО «Энерготестконтроль» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312560 от 03.08.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____» _____2020 г.