УТВЕРЖДАЮ

Заместитель директора по производственной метрологии ФГУП «ВНИИМС»

Н.В. Иванникова 10 2019 г.

29 10

Калибраторы температуры PRESYS

МЕТОДИКА ПОВЕРКИ

МП 207-037-2018

1. Введение

Настоящая методика распространяется на Калибраторы температуры PRESYS (далее по тексту — калибраторы или приборы), изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия и устанавливает методы и средства их первичной и периодической поверок. Интервал между поверками — 2 года.

2. Операции поверки

При проведении первичной и периодической поверки калибраторов должны выполняться операции, указанные в таблице 1.

-	_	4
10	OTHER	a I
1 a	блиц	aı

	Используемый	Номер	_	е операции при
Наименование операции	вставной блок	пункта	первичной	периодической
	(вставка)	МΠ	поверке	поверке
Внешний осмотр, проверка версии встроенного ПО	-	6.1	Да	Да
Проведение поверки с использованием металлического вставного блока	Металлический вставной блок	6.2	Да	Да
Определение основной абсолютной погрешности воспроизведения заданной температуры по внутреннему термометру	Металлический вставной блок	6.2.1	Да	Да
Определение основной абсолютной погрешности установления заданной температуры по внешнему термопреобразователю сопротивления (TC) повышенной точности	Металлический вставной блок	6.2.2	Да	Да
Определение нестабильности поддержания заданной температуры	Металлический вставной блок	6.2.3	Да	Да
Определение осевой неоднородности температуры	Металлический вставной блок	6.2.4	Да	Нет
Определение радиальной неоднородности температуры	Металлический вставной блок	6.2.5	Да	Нет
Проведение поверки с использованием жидкостного вставного блока	Жидкостный вставной блок	6.3	Да	Да
Определение основной абсолютной погрешности установления заданной температуры по внешнему термопреобразователю сопротивления (TC) повышенной точности	Жидкостный вставной блок	6.3.1	Да	Да
Определение нестабильности поддержания заданной температуры	Жидкостный вставной блок	6.3.2	Да	Да
Определение неоднородности распределения температуры в жидкостном вставном блоке	Жидкостный вставной блок	6.3.3	Да	Нет

	Используемый	Номер	Проведени	е операции при
Наименование операции	вставной блок	пункта	первичной	периодической
	(вставка)	МΠ	поверке	поверке
Проведение поверки с	Вставка			
использованием вставки	абсолютно	6.4	Да	Да
абсолютно черного тела (АЧТ)	черного тела			
Определение абсолютной	Вставка			
погрешности установления	абсолютно	6.4.1	Да	Да
заданной температуры	черного тела			
Определение нестабильности	Вставка			
поддержания заданной	абсолютно	6.4.2	Да	Да
температуры	черного тела			
Проведение поверки с				
использованием встроенной платы		6.5	Да	Да
для измерений электрических	-	0.5	да	да
сигналов				
Определение основной				
абсолютной погрешности каналов				
измерений сопротивления	-	6.5.1	Да	Да
внешнего ТС повышенной				
точности и рабочего ТС				
Определение основной				
абсолютной погрешности канала	_	6.5.2	Да	Да
измерений напряжения		0.5.2	да	да
постоянного тока				
Определение основной				
абсолютной погрешности канала	-	6.5.3	Да	Да
измерений силы постоянного тока				

Примечание:

Операции при поверке могут проводится не в полном объеме, а в соответствии с требованиями заказчика, определяемыми особенностями применения поверяемого калибратора.

3. Средства поверки

При проведении поверки применяют средства измерений, указанные в таблице 2. Таблица 2

таолица 2		
Наименование и тип	Метрологические характеристики или регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений	
Рабочий эталон 1-го, 2-го разрядов по ГОСТ 8.558- 2009 - термометры сопротивления платиновые эталонные ПТС-10М	Регистрационный номер № 11804-99	
Рабочий эталон 1-го, 2-го разрядов по ГОСТ 8.558- 2009 - термометры сопротивления эталонные ЭТС- 25		
Рабочий эталон 1-го, 2-го разрядов по ГОСТ 8.558-2009 - термометры сопротивления платиновые эталонные ЭТС-1С, ЭТС-1К	Регистрационный номер № 73672-18	
Рабочий эталон 2, 3-го разрядов по ГОСТ 8.558- 2009 — термометр сопротивления платиновый вибропрочный эталонный ПТСВ		
Рабочий эталон 3-го разряда по ГОСТ 8.558-2009 –	Регистрационный № 19916-10	

Наименование и тип	Метрологические характеристики или регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений
термометр сопротивления эталонный ЭТС-100	•
Рабочие эталоны 2-го, 3-го разрядов по ГОСТ 8.558-2009 — термометры сопротивления платиновые вибропрочные эталонные ПТСВ 9-2, ПТСВ 10-2, ПТСВ 11-2, ПТСВ 12-2	Регистрационный № 65421-16
Рабочий эталон 2-го разряда по ГОСТ 8.558-2009 - преобразователь термоэлектрический эталонный ТППО	Регистрационный № 19254-10
Рабочий эталон 1-го разряда по ГОСТ 8.558-2009 –	
эталонный пирометр полного или частичного излучения	-
Измеритель температуры многоканальный прецизионный МИТ8	Регистрационный № 19736-11
Измеритель температуры двухканальный прецизионный МИТ2	Регистрационный № 46432-11
Мера электрического сопротивления постоянного гока многозначная МС 3070	Регистрационный № 50281-12
Компаратор-калибратор универсальный КМ300Р	Регистрационный № 54727-13
Калибратор многофункциональный Fluke 5720A	Регистрационный № 52495-13
Калибратор процессов прецизионный Fluke 7526A	Регистрационный № 54934-13
Вставной блок (вставка)	•
Теплопроводящая жидкость (при использовании жидкостного блока)	-
Комплект измерительных проводов	-
Примечание:	
Допускается применение аналогичных средств	поверки, обеспечивающих определени

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

4. Требования безопасности

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок» (ПОТЭУ (2014));
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства поверки;
- указания по технике безопасности, приведенные в руководстве по эксплуатации на калибраторы.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений и прошедшие инструктаж по технике безопасности.

5. Условия поверки и подготовка к ней

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха, °С

23±3:

- относительная влажность окружающего воздуха, %, не более
- 75;

- атмосферное давление, кПа

- от 86 до 106,7;
- внешние электрические и магнитные поля, удары и вибрации, влияющие на работу приборов и средств поверки, должны отсутствовать.
- 5.2 Средства поверки и оборудование подготавливают к работе в соответствии с эксплуатационной документацией.

5.3 Перед проведением поверки калибраторы должны быть выдержаны при нормальной температуре не менее 3 часов.

6. Проведение поверки

При первичной и периодической поверке калибраторов с использованием внутреннего термометра и (или) внешнего ТС повышенной точности допускается проводить поверку в диапазонах воспроизводимых температур, согласованных с пользователем, но лежащих внутри полного диапазона воспроизводимых температур используемого калибратора (при этом делают соответствующую запись в свидетельстве о поверке.).

В случае использования калибратора для воспроизведения одного значения температуры поверка проводится для 3-х температурных точек: значения температуры при требуемой воспроизводимой температурной точке, а также значений на 10 °C выше и ниже требуемой температурной точки (при этом делают соответствующую запись в свидетельстве о поверке.).

При первичной и периодической поверке допускается проводить поверку без внешнего ТС повышенной точности (при использовании калибраторов только с металлическими вставными блоками).

При первичной и периодической поверке количество и тип используемых вставных блоков (вставок) согласовывают с пользователем (при этом делают соответствующую запись в свидетельстве о поверке).

Первичная и периодическая поверка калибраторов с использованием вставки АЧТ, осуществляется только после поверки калибратора с использованием металлического и (или) жидкостного вставных блоков.

При первичной и периодической поверке калибраторов с использованием встроенной платы для измерений электрических сигналов допускается проводить поверку в диапазонах измерений, согласованных с пользователем, но лежащих внутри полного диапазона измерений электрических сигналов используемой платы калибратора (при этом делают соответствующую запись в свидетельстве о поверке).

При первичной и периодической поверке калибраторов допускается, по согласованию с пользователем, не проводить поверку встроенной платы для измерений электрических сигналов (при этом делают соответствующую запись в свидетельстве о поверке).

6.1. Внешний осмотр, проверка версии встроенного ПО

- 6.1.1. Проверяют калибратор на отсутствие механических повреждений, коррозии, нарушений покрытий, надписей и других дефектов, которые могут повлиять на работу калибратора и на качество поверки.
- 6.1.2. Включают калибратор, открывают через главное меню калибратора раздел информации.
- 6.1.3. Сравнивают идентификационные данные встроенной части ПО с данными приведенными в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование встроенного ПО	AN.FW
Номер версии (идентификационный номер) ПО, не ниже	1
Цифровой идентификатор программного обеспечения	отстуствует

6.1.4. Результаты проверки считают положительными, если выполняются вышеперечисленные требования.

6.2. Проведение поверки с использованием металлического вставного блока

Кольцевые (воздушные) зазоры между внутренними диаметрами используемых при поверке отверстий вставного блока и наружных диаметров используемого эталона и внешнего ТС калибратора (при наличии) должны не превышать 0,5 мм при температуре не более 650 °C (включ.) и 1,0 мм при температуре св. 650 до 1100 °C.

Для улучшения теплопроводности (уменьшения кольцевого зазора) допускается использовать мелкодисперсный порошок Al₂O₃.

Для поверки калибраторов рекомендуется использовать теплоизолирующие крышки или тепловые барьеры, а также защитные чехлы для выступающей части защитной оборочки чувствительных элементов эталонов.

6.2.1. Определение основной абсолютной погрешности воспроизведения заданной температуры по внутреннему термометру

Определение основной абсолютной погрешности установления заданной температуры по внутреннему термометру допускается проводить совместно с п. 6.2.3 «Определение нестабильности поддержания заданной температуры».

- 6.2.1.1. Погрешность определяют с помощью эталонного термометра сопротивления подключенного к измерителю температуры многоканальному прецизионному МИТ8 или эталонного преобразователя термоэлектрического (только для модели ТА-1200Р) подключенного к измерителю температуры двухканальному прецизионному МИТ2 (далее эталон) не менее, чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора включая начало и конец диапазона.
- 6.2.1.2. Помещают сменный блок в калибратор, затем погружают эталон в центральное (при наличии) или в любое другое, близкое к геометрическому центру поверхности вставного блока. При наличии пустых отверстий в блоке сравнения рекомендуется закрыть их металлическими (керамическими) стержнями или засыпать мелкодисперсным порошком Al2O3.
- 6.2.1.3. Устанавливают на калибраторе режим измерений по внутреннему термометру.
- 6.2.1.4. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.2.1.5. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры эталона, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) показаний эталона в течение не менее 5 минут с интервалом не более 15 секунд в установившемся температурном режиме.
- 6.2.1.6. Повторяют операции по п.п. 6.2.1.4 6.2.1.5 для остальных поверяемых точек.
- 6.2.1.7. Рассчитывают погрешность установления заданной температуры по внутреннему термометру (Δ_K , °C) для каждой поверяемой точки по формуле 1:

$$\Delta_{\rm K} = T_{\rm K} - T_{\rm \Im} \tag{1}$$

где: T_K – значение температуры по внутреннему термометру калибратора, °C; T_{\Im} – среднее арифметическое значение температуры, измеренное эталоном, °C

6.2.1.8. Полученные значения установления заданной температуры по внутреннему термометру во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) внутреннего термометра калибратора. После завершения процесса настройки проводят повторные операции по п.п. 6.2.1.3 - 6.2.1.7.

6.2.2. Определение основной абсолютной погрешности установления заданной температуры по внешнему термопреобразователю сопротивления (TC) повышенной точности

Определение основной абсолютной погрешности установления заданной температуры по внешнему ТС допускается проводить совместно с п. 6.2.3 «Определение нестабильности поддержания заданной температуры».

Определение погрешности проводят после положительного результата проверки канала для подключения внешнего ТС повышенной точности (п.п. 6.7.), а также после предварительного сравнения записанных в калибратор индивидуальных коэффициентов (МТШ-90 или Каллендара-Ван Дюзена) внешнего ТС с коэффициентами, указанными в сертификате заводской калибровки на ТС (при первичной поверке) или в свидетельстве о поверке на калибратор (при периодической поверке). В случае, если коэффициенты не совпадают, записывают корректные данные во внутреннюю память калибратора.

- 6.2.2.1. Погрешность определяют с помощью эталонного термометра сопротивления подключенного к измерителю температуры многоканальному прецизионному МИТ8 или измерителю температуры двухканальному прецизионному МИТ2 (далее эталон) не менее, чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора и (или) в диапазоне измеряемых температур внешнего ТС включая начало и конец диапазона.
- 6.2.2.2. Помещают сменный блок с не менее 2-мя близкими к геометрическому центру или друг другу отверстиями в калибратор, затем погружают в отверстия эталон и внешний ТС калибратора. При наличии пустых отверстий в блоке сравнения необходимо закрыть их металлическими (керамическими) стержнями или засыпать мелкодисперсным порошком Al2O3.
 - 6.2.2.3. Устанавливают на калибраторе режим измерений по внешнему ТС.
- 6.2.2.4. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.2.2.5. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры эталона, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) показаний эталона в течение не менее 5 минут с интервалом не более 15 секунд в установившемся температурном режиме.
- 6.2.2.6. Повторяют операции по п.п. 6.2.2.4, 6.2.2.5 для остальных поверяемых точек.
- 6.2.2.7. Рассчитывают погрешность установления заданной температуры по внешнему ТС (Δ_{TC} , °C) для каждой поверяемой точки по формуле 2:

$$\Delta_{\rm TC} = T_{\rm TC} - T_{\rm 9} \tag{2}$$

где: T_{TC} – значение температуры по внешнему TC, °C, T_{\Im} – среднее арифметическое значение температуры, измеренное эталоном, °C.

6.2.2.8. Полученные значения установления заданной температуры по внешнему ТС во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) внешнего ТС. После завершения процесса настройки проводят повторные операции по п.п. 6.2.2.3-6.2.2.7.

6.2.3. Определение нестабильности поддержания заданной температуры

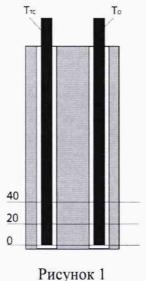
Определение нестабильности поддержания заданной температуры допускается проводить совместно с п. 6.2.1 «Определение основной абсолютной погрешности установления заданной температуры по внутреннему термометру» и (или) с п. 6.2.2 «Определение основной абсолютной погрешности установления заданной температуры по внешнему термопреобразователю сопротивления (ТС) повышенной точности».

- 6.2.3.1. Нестабильность определяют с помощью эталонного термометра сопротивления подключенного к измерителю температуры многоканальному прецизионному МИТ8 или эталонного преобразователя термоэлектрического подключенного к измерителю температуры двухканальному прецизионному МИТ2 (далее эталон) не менее, чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора включая начало и конец диапазона.
- 6.2.3.2. Помещают сменный блок в калибратор, затем погружают эталон в центральное (при наличии) или в любое другое, близкое к геометрическому центру поверхности блока сравнения. При наличии пустых отверстий в блоке сравнения рекомендуется закрыть их металлическими (керамическими) стержнями или засыпать мелкодисперсным порошком Al2O3.
- 6.2.3.3. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.2.3.4. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры эталона, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) показаний эталона в течение не менее 30 минут с интервалом не более 30 секунд в установившемся температурном режиме.
- 6.2.3.5. Повторяют операции по п.п. 6.2.3.3, 6.2.3.4 для остальных поверяемых точек.
- 6.2.3.6. Рассчитывают нестабильность поддержания заданной температуры (T_H, °C) для каждой поверяемой точки по формуле 3:

$$T_H = \pm \frac{\left| T_{\text{max}} - T_{\text{min}} \right|}{2} \tag{3}$$

где: T_{max} – максимальное значение заданной температуры на калибраторе измеренное эталоном в течение 30 минут после стабилизации, °C;

 $T_{\rm min}$ — минимальное значение заданной температуры на калибраторе измеренное эталоном в течение 30 минут после стабилизации, °C


6.2.3.7. Полученные значения нестабильности поддержания заданной температуры во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

6.2.4. Определение осевой неоднородности температуры

Осевую неоднородность определяют с помощью основного (То) и вспомогательного (Ттс) термопреобразователей сопротивления (ТС) с длинами чувствительных элементов не более 10 мм или преобразователей термоэлектрических (ТП), подключенных к измерителю температуры МИТ8 (МИТ2) при двух значениях температуры, соответствующих нижнему и верхнему пределам диапазона воспроизводимых температур калибратора или диапазона воспроизводимых температур, согласованного с пользователем.

6.2.4.1. Помещают сменный блок с не менее 2-мя отверстиями в калибратор, затем погружают в отверстия блока основной и вспомогательный ТС (ТП) на максимально возможную глубину. При наличии пустых отверстий в блоке сравнения рекомендуется закрыть их металлическими (керамическими) стержнями или засыпать мелкодисперсным порошком Al2O3.

Схема блоков и расположений ТС (ТП) (вид сбоку) приведена на рисунках 1-2.

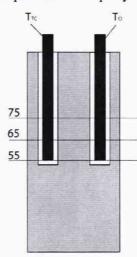


Рисунок 2 (только для модели ТА-1200Р)

- 6.2.4.2. Устанавливают на калибраторе необходимое значение температуры, соответствующее требуемой контрольной температурной точке.
- После выхода калибратора на заданное значение температуры, а также 6.2.4.3. достижения стабилизации показаний температуры основного и вспомогательного ТС, (ТП), снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.
- Рассчитывают разность показаний вспомогательного и основного ТС (ТП) 6.2.4.4. $(\Delta_{P1}, {}^{\circ}C)$ по формуле 4:

$$\Delta_{P1} = T_{TC1} - T_{O1} \tag{4}$$

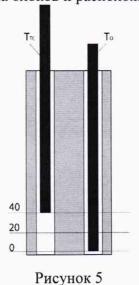
арифметическое Ттс1 - среднее значение температуры, измеренное где: вспомогательным ТС (ТП), °С;

То1 - среднее арифметическое значение температуры, измеренное основным ТС (TΠ), °C.

Поднимают вспомогательный ТС на 20 мм (65 мм для модели ТА-1200Р) 6.2.4.5. от дна скважины для вставного блока калибратора с учетом длины чувствительного элемента. Схема блоков и расположений ТС (ТП) (вид сбоку) приведена на рисунках 3-4.

75 65 55

Рисунок 4 (только для модели TA-1200P)


- 6.2.4.6. После достижения стабилизации показаний температуры основного и вспомогательного ТС (ТП), снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.
- 6.2.4.7. Рассчитывают разность показаний вспомогательного и основного ТС (ТП) (Δ_{P2} , °C) по формуле 5:

$$\Delta_{P2} = T_{TC2} - T_{O2} \tag{5}$$

где: T_{TC2} – среднее арифметическое значение температуры, измеренное вспомогательным ТС (ТП), °С;

 $T_{\rm O2}$ – среднее арифметическое значение температуры, измеренное основным TC (ТП), °C.

6.2.4.8. Поднимают вспомогательный ТС на 40 мм (75 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора с учетом длины чувствительного элемента. Схема блоков и расположений ТС (ТП) (вид сбоку) приведена на рисунках 5-6.

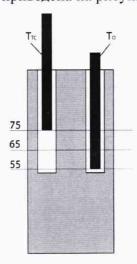


Рисунок 6 (только для модели ТА-1200Р)

6.2.4.9. После достижения стабилизации показаний температуры основного и вспомогательного ТС (ТП), снимают показания с дисплея МИТ8 (МИТ2) или производят

автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.

6.2.4.10. Рассчитывают разность показаний вспомогательного и основного ТС (ТП) (Δ_{P3} , °С) по формуле 6:

$$\Delta_{P3} = T_{TC3} - T_{O3} \tag{6}$$

где: T_{TC3} – среднее арифметическое значение температуры, измеренное вспомогательным TC (ТП), °C;

 $T_{\rm O3}$ – среднее арифметическое значение температуры, измеренное основным TC (TП), °C.

6.2.4.11. Повторно опускают вспомогательный TC на максимально возможную глубину.

Схема блоков и расположений ТС (ТП) (вид сбоку) приведена на рисунках 7-8.

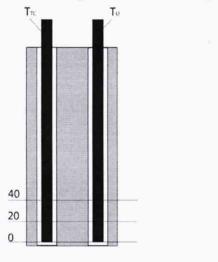


Рисунок 7

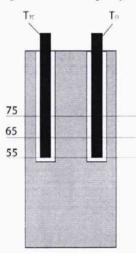


Рисунок 8 (только для модели TA-1200P)

- 6.2.4.12. После достижения стабилизации показаний температуры основного и вспомогательного ТС (ТП), снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.
- 6.2.4.13. Рассчитывают разность показаний вспомогательного и основного ТС (ТП) (Δ_{P4} , °C) по формуле 7:

$$\Delta_{P4} = T_{TC4} - T_{O4} \tag{7}$$

где: T_{TC4} – среднее арифметическое значение температуры, измеренное вспомогательным TC (TП), °C;

 $T_{\rm O4}$ – среднее арифметическое значение температуры, измеренное основным TC (TП), °C.

6.2.4.14. Рассчитывают значение осевой неоднородности (Δ_{01} , °C) на высоте вспомогательного ТС (ТП) 20 мм (65 мм для модели TA-1200P) от дна скважины для вставного блока калибратора по формуле 8:

$$\Delta_{01} = \Delta_{P2} - \frac{(\Delta_{P1} + \Delta_{P4})}{2}$$
 (8)

где: Δ_{P2} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 20 мм (65 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора, °C;

 Δ_{P1} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 0 мм (55 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора рассчитанная по формуле 4, °С;

 Δ_{P4} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 0 мм (55 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора рассчитанная по формуле 7, °С.

6.2.4.15. Рассчитывают значение осевой неоднородности (Δ_{02} , °C) на высоте вспомогательного ТС (ТП) 40 мм (75 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора по формуле 9:

$$\Delta_{02} = \Delta_{P3} - \frac{(\Delta_{P_1} + \Delta_{P_4})}{2}$$
 (9)

где: Δ_{P3} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 40 мм (75 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора, °C;

 Δ_{P1} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 0 мм (55 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора рассчитанная по формуле 4, °С;

 Δ_{P4} — разность показаний вспомогательного и основного ТС (ТП) при высоте вспомогательного ТС (ТП) 0 мм (55 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора рассчитанная по формуле 7, °С.

6.2.4.16. Рассчитывают максимальное значение осевой неоднородности (Δ_0 , °C) по формуле 10:

$$\Delta_0 = max(\Delta_{01}; \Delta_{02}) \tag{10}$$

где: Δ_{01} – Значение осевой неоднородности на высоте вспомогательного ТС (ТП) 20 мм (65 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора, °С;

 Δ_{02} — Значение осевой неоднородности на высоте вспомогательного ТС (ТП) 40 мм (75 мм для модели ТА-1200Р) от дна скважины для вставного блока калибратора, °С

- 6.2.4.17. Повторяют операции по п.п. 6.2.4.2 6.2.4.16 для остальных поверяемых точек.
- 6.2.4.18. Полученные значения осевой неоднородности во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

6.2.5. Определение радиальной неоднородности температуры

Радиальную неоднородность определяют с помощью двух термопреобразователей сопротивления (ТС) или преобразователей термоэлектрических (ТП) одинакового диаметра, подключенных к измерителю температуры МИТ8 (МИТ2) при двух значениях температуры, соответствующих нижнему и верхнему пределам диапазона воспроизводимых температур калибратора или диапазона воспроизводимых температур, согласованного с пользователем.

6.2.5.1. Помещают сменный блок с 4-мя отверстиями одинакового диаметра, расположенными на одной окружности и на одинаковом расстоянии относительно осевого центра блока в калибратор.

Схема блока (вид сверху) приведена на рисунке 9.

Допускается использовать блок с 2-мя отверстиями одинакового диаметра, расположенными друг напротив друга на одинаковом расстоянии относительно осевого центра блока.

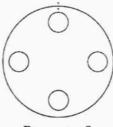


Рисунок 9

6.2.5.2. Погружают два ТС (ТП) в расположенные друг напротив друга отверстия блока на максимально возможную глубину. Допускается закрыть пустые отверстия в блоке сравнения металлическими (керамическими) стержнями или засыпать мелкодисперсным порошком Al2O3.

Схема расположений двух ТС (ТП) приведена на рисунке 10.

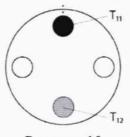


Рисунок 10

- 6.2.5.3. Устанавливают на калибраторе необходимое значение температуры, соответствующее требуемой контрольной температурной точке.
- 6.2.5.4. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры ТС (ТП), снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.
 - 6.2.5.5. Рассчитывают разность показаний обоих ТС (ТП) (Δ_1 , °С) по формуле 11:

$$\Delta_1 = T_{11} - T_{12} \tag{11}$$

где: T_{11} – среднее арифметическое значение температуры, измеренное ТС (ТП) с условным № 1, °C;

 T_{12} — среднее арифметическое значение температуры, измеренное TC (TП) с условным № 2, °C

6.2.5.6. Меняют местами ТС (ТП) с условными номерами 1 и 2. Схема расположений двух ТС (ТП) приведена на рисунке 11.

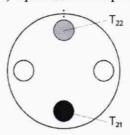


Рисунок 11

- 6.2.5.7. После стабилизации показаний температуры ТС (ТП) на заданном значении температуры, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС (ТП) в установившемся температурном режиме.
 - 6.2.5.8. Рассчитывают разность показаний обоих ТС (ТП) (Δ_2 , °С) по формуле 12:

$$\Delta_2 = T_{21} - T_{22} \tag{12}$$

где: T_{21} – среднее арифметическое значение температуры, измеренное ТС (ТП) с условным № 1, °С;

 T_{22} – среднее арифметическое значение температуры, измеренное TC (TП) с условным № 2, °C

6.2.5.9. Рассчитывают значение радиальной неоднородности температуры разность показаний обоих ТС (ТП) (Δ_P , °С) по формуле 13:

$$\Delta_{\rm P} = \frac{(\Delta_1 - \Delta_2)}{2} \tag{13}$$

где: Δ_1 –значение температуры, измеренное ТС (ТП) с условным № 1, °С;

 Δ_2 – среднее арифметическое значение температуры, измеренное ТС (ТП) с условным № 2, °С

6.2.5.10. Устанавливают два ТС (ТП) в соседние отверстия.

Схема расположений двух ТС (ТП) приведены на рисунках 12-13.

При использовании блока с 2-мя отверстиями, поворачивают блок вдоль своей оси на 90° .

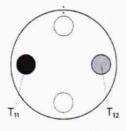


Рисунок 12

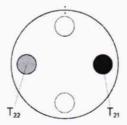


Рисунок 13

- 6.2.5.11. Повторяют операции по п.п. 6.2.5.2 6.2.5.9 для остальных поверяемых точек.
- 6.2.5.12. Полученные значения радиальной неоднородности во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

6.3. Проведение поверки с использованием жидкостного вставного блока

Поверка проводится только в комплекте с внешнем термопреобразователем сопротивления повышенной точности

В случае поверки калибратора в части температурного диапазона, нижняя и верхняя границы поверяемого диапазона являются самой низкой и самой высокой устанавливаемой температурой теплоносителя соответственно.

В качестве рабочей теплопроводящей жидкости рекомендуется использовать (при этом делают соответствующую запись в свидетельстве о поверке):

- этиловый спирт (для диапазона от -60 до +15 °C);
- смесь этилового спирта и дистиллированной воды в пропорции 1 к 1 (для диапазона от -30 до +90 °C);
 - дистиллированную воду (для диапазона от +5 до +90 °C);
 - силиконовые масла производства фирмы XIAMETER: PMX-200 SILICONE FLUID 5 CS (для диапазона от -40 до +130 °C); PMX-200 SILICONE FLUID 10 CS (для диапазона от -35 до +155 °C)
 - одобренный производителем аналог теплопроводящей жидкости

6.3.1. Определение основной абсолютной погрешности установления заданной температуры по внешнему термопреобразователю сопротивления (TC) повышенной точности

Определение основной абсолютной погрешности установления заданной температуры по внешнему ТС допускается проводить совместно с п. 6.3.2 «Определение нестабильности поддержания заданной температуры».

Определение погрешности проводят после положительного результата проверки канала для подключения внешнего ТС повышенной точности (п.п. 6.7.), а также после предварительного сравнения записанных в калибратор индивидуальных коэффициентов (МТШ-90 или Каллендара-Ван Дюзена) внешнего ТС с коэффициентами, указанными в сертификате заводской калибровки на ТС (при первичной поверке) или в свидетельстве о поверке на калибратор (при периодической поверке). В случае, если коэффициенты не совпадают, записывают корректные данные во внутреннюю память калибратора.

- 6.3.1.1. Погрешность определяют с помощью эталонного термометра сопротивления подключенного к измерителю температуры многоканальному прецизионному МИТ8 или измерителю температуры двухканальному прецизионному МИТ2 не менее, чем при трех значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора (с учетом используемого теплоносителя), включая нижний и верхний пределы диапазона.
- 6.3.1.2. Помещают жидкостный блок с теплоносителем и магнитной мешалкой в калибратор. Допускается использование жидкостного блока в комплекте с держателем для ТС, устанавливаемого внутрь блока, для отсутствия возможного соударения магнитной мешалки блока с защитной оболочкой чувствительного элемента эталона и (или) внешнего ТС калибратора.
- 6.3.1.3. Погружают на максимально возможную глубину эталон и внешний TC калибратора.
- 6.3.1.4. Устанавливают на калибраторе режим измерений по внешнему термометру.
 - 6.3.1.5. Включают режим перемешивания теплоносителя.
- 6.3.1.6. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.3.1.7. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры эталона, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) показаний эталона в течение не менее 5 минут с интервалом не более 15 секунд в установившемся температурном режиме.

- 6.3.1.8. Повторяют операции по п.п. 6.3.1.4 6.3.1.7 для остальных поверяемых точек.
- 6.3.1.9. Рассчитывают погрешность установления заданной температуры по внешнему ТС (Δ_{TC} , °C) для каждой поверяемой точки по формуле 14:

$$\Delta_{\rm TC} = T_{\rm TC} - T_{\rm 9} \tag{14}$$

где: T_{TC} – значение температуры по внешнему TC, °C,

 T_{\ni} – среднее арифметическое значение температуры, измеренное эталоном, °C.

6.3.1.10. Полученные значения установления заданной температуры по внешнему ТС во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) внешнего ТС. После завершения процесса настройки проводят повторные операции по п.п. 6.3.1.4-6.3.1.9.

6.3.2. Определение нестабильности поддержания заданной температуры

- 6.3.2.1. Определение нестабильности поддержания заданной температуры допускается проводить совместно с п. 6.3.1 «Определение основной абсолютной погрешности воспроизведения заданной температуры по внешнему термопреобразователю сопротивления (ТС) повышенной точности».
- 6.3.2.2. Нестабильность определяют с помощью эталонного термометра сопротивления подключенного к измерителю температуры многоканальному прецизионному МИТ8 или измерителю температуры двухканальному прецизионному МИТ2 не менее, чем при трех значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора (с учетом используемого теплоносителя), включая нижний и верхний пределы диапазона.
- 6.3.2.3. Помещают жидкостный блок с теплоносителем и магнитной мешалкой в калибратор. Допускается использование жидкостного блока в комплекте с держателем для ТС, устанавливаемого внутрь блока, для отсутствия возможного соударения магнитной мешалки блока с защитной оболочкой чувствительного элемента эталона и (или) внешнего ТС калибратора.
- 6.3.2.4. Погружают на максимально возможную глубину эталон и внешний TC калибратора.
- 6.3.2.5. Устанавливают на калибраторе режим измерений по внешнему термометру.
 - 6.3.2.6. Включают режим перемешивания теплоносителя.
- 6.3.2.7. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.3.2.8. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры эталона, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) показаний эталона в течение не менее 30 минут с интервалом не более 30 секунд в установившемся температурном режиме.
- 6.3.2.9. Повторяют операции по п.п. 6.3.2.5 6.3.2.8 для остальных поверяемых точек.
- 6.3.2.10. Рассчитывают нестабильность поддержания заданной температуры (T_H, °C) для каждой поверяемой точки по формуле 15:

$$T_H = \pm \frac{\left| T_{\text{max}} - T_{\text{min}} \right|}{2} \tag{15}$$

где: T_{max} – максимальное значение заданной температуры на калибраторе измеренное эталоном в течение 30 минут после стабилизации, °C;

 $T_{\rm min}$ — минимальное значение заданной температуры на калибраторе измеренное эталоном в течение 30 минут после стабилизации, °C

6.3.2.11. Полученные значения нестабильности поддержания заданной температуры во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

6.3.3. Определение неоднородности распределения температуры в жидкостном вставном блоке

Неоднородность распределения температуры определяют с помощью внешнего (основного) ТС калибратора (T_0) и вспомогательного ТС (T_{TC}) с длиной чувствительного элемента не более 10 мм, подключенных к измерителю температуры МИТ8 (МИТ2) при двух значениях температуры, соответствующих нижнему и верхнему пределам диапазона воспроизводимых температур калибратора (с учетом используемого теплоносителя) или диапазона воспроизводимых температур, согласованного с пользователем.

В качестве основного ТС допускается использовать внешний ТС калибратора.

- 6.3.3.1. Помещают жидкостный блок с теплоносителем и магнитной мешалкой в калибратор. Допускается использование жидкостного блока в комплекте с держателем для ТС, устанавливаемого внутрь блока, для отсутствия возможного соударения магнитной мешалки блока с защитной оболочкой используемых ТС.
- 6.3.3.2. Погружают основной и вспомогательный TC в непосредственной близости чувствительных элементов друг от друга на максимально возможную глубину.
- 6.3.3.3. Устанавливают на калибраторе режим измерений по внешнему термометру.
 - 6.3.3.4. Включают режим перемешивания теплоносителя.
- 6.3.3.5. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.3.3.6. После выхода калибратора на заданное значение температуры, а также достижения стабилизации показаний температуры основного и вспомогательного ТС, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС в установившемся температурном режиме.
- 6.3.3.7. Рассчитывают разность показаний вспомогательного и основного ТС (Δ_{P1} , °C) по формуле 16:

$$\Delta_{P1} = T_{TC1} - T_{O1} \tag{16}$$

где: T_{TC1} – среднее арифметическое значение температуры, измеренное вспомогательным TC, °C;

 $T_{\rm O1}$ – среднее арифметическое значение температуры, измеренное основным TC, °C.

- 6.3.3.8. Поднимают вспомогательный TC на 20 мм от уровня установки основного TC.
- 6.3.3.9. После достижения стабилизации показаний температуры основного и вспомогательного ТС снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС в установившемся температурном режиме.
- 6.3.3.10. Рассчитывают разность показаний вспомогательного и основного ТС (Δ_{P2} , °C) по формуле 17:

$$\Delta_{P2} = T_{TC2} - T_{O2} \tag{17}$$

где: T_{TC2} – среднее арифметическое значение температуры, измеренное вспомогательным TC, °C;

 $T_{\rm O2}$ – среднее арифметическое значение температуры, измеренное основным TC, °C.

- 6.3.3.11. Поднимают вспомогательный TC на 40 мм от уровня установки основного TC.
- 6.3.3.12. После достижения стабилизации показаний температуры основного и вспомогательного ТС снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС в установившемся температурном режиме.
- 6.3.3.13. Рассчитывают разность показаний вспомогательного и основного TC (Δ_{P3} , °C) по формуле 18:

$$\Delta_{P3} = T_{TC3} - T_{O3} \tag{18}$$

где: T_{TC3} – среднее арифметическое значение температуры, измеренное вспомогательным TC, ${}^{\circ}C$;

 $T_{\rm O3}$ – среднее арифметическое значение температуры, измеренное основным TC, °C.

- 6.3.3.14. Опускают вспомогательный ТС до уровня установки основного ТС.
- 6.3.3.15. После достижения стабилизации показаний температуры основного и вспомогательного ТС, снимают показания с дисплея МИТ8 (МИТ2) или производят автоматическую запись с использованием ПО МИТ8 (МИТ2) не менее 5 показаний ТС в установившемся температурном режиме.
- 6.3.3.16. Рассчитывают разность показаний вспомогательного и основного ТС (Δ_{p_4} , °C) по формуле 19:

$$\Delta_{P4} = T_{TC4} - T_{O4} \tag{19}$$

где: T_{TC4} – среднее арифметическое значение температуры, измеренное вспомогательным TC, °C;

 $T_{\rm O4}$ – среднее арифметическое значение температуры, измеренное основным TC, °C.

6.3.3.17. Рассчитывают значение неоднородности ($\Delta_{\rm H1}$, °C) на высоте вспомогательного TC 20 мм от уровня установки основного TC по формуле 20:

$$\Delta_{\text{H}1} = \Delta_{\text{P}2} - \frac{(\Delta_{\text{P}1} + \Delta_{\text{P}4})}{2} \tag{20}$$

где: Δ_{P2} — разность показаний вспомогательного и основного TC при высоте вспомогательного TC 20 мм от уровня установки основного TC, °C;

 Δ_{P1} — разность показаний вспомогательного и основного TC при высоте вспомогательного TC 0 мм от уровня установки основного TC рассчитанная по формуле 18, °C;

 Δ_{P4} — разность показаний вспомогательного и основного TC при высоте вспомогательного TC 0 мм от уровня установки основного TC рассчитанная по формуле 21, °C.

6.3.3.18. Рассчитывают значение неоднородности (Δ_{H2} , °C) на высоте вспомогательного TC 40 мм от уровня установки основного TC по формуле 21:

$$\Delta_{H2} = \Delta_{P3} - \frac{(\Delta_{P1} + \Delta_{P4})}{2}$$
 (21)

- где: Δ_{P3} разность показаний вспомогательного и основного TC при высоте вспомогательного TC 40 мм от уровня установки основного TC, °C;
- Δ_{P1} разность показаний вспомогательного и основного TC при высоте вспомогательного TC 0 мм от уровня установки основного TC рассчитанная по формуле 18, °C;
- Δ_{P4} разность показаний вспомогательного и основного TC при высоте вспомогательного TC 0 мм от уровня установки основного TC по формуле 21, °C.
- 6.3.3.19. Рассчитывают максимальное значение неоднородности (Δ_{H} , °C) по формуле 22:

$$\Delta_{H} = max(\Delta_{H1}; \Delta_{H2}) \tag{22}$$

- где: Δ_{01} Значение неоднородности на высоте вспомогательного TC 20 мм от дна скважины для вставного блока калибратора, °C;
- Δ_{02} Значение неоднородности на высоте вспомогательного TC 40 мм от дна скважины для вставного блока калибратора, °C
- 6.3.3.20. Повторяют операции по п.п. 6.3.3.5 6.2.4.19 для остальных поверяемых точек.
- 6.3.3.21. Полученные значения неоднородности во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

6.4. Проведение поверки с использованием вставки абсолютно черного тела (АЧТ)

Поверка проводится в комплекте с внешнем термопреобразователем сопротивления повышенной точности или с внешним преобразователем термоэлектрическим (ТП) типа N по ГОСТ Р 8.585-2001 (только для модели ТА-1200Р).

При поверке на значениях воспроизводимых температур ниже 0 °C, необходимо закрывать теплоизолирующей крышкой отверстие вставки АЧТ между измерениями температуры.

- 6.4.1. Определение абсолютной погрешности установления заданной температуры Определение нестабильности поддержания заданной температуры допускается проводить совместно с п. 6.4.2 «Определение нестабильности поддержания заданной температуры»
- 6.4.1.1. Устанавливают на калибраторе режим воспроизведения температуры по внешнему ТС или внутреннему ТС с включенным режимом измерений электрических сигналов, поступающих от ТП типа N по ГОСТ Р 8.585-2001 (только для модели ТА-1200Р).
- 6.4.1.2. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.4.1.3. Нестабильность определяют с помощью эталонного пирометра полного или частичного излучения 1-го разряда по ГОСТ 8.558-2009 (далее эталон) не менее, чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора и (или) в диапазоне измеряемых температур внешнего ТС (ТП) включая начало и конец диапазона.
 - 6.4.1.4. Помещают вставку АЧТ в калибратор.
- 6.4.1.5. Помещают в калибратор внешний ТС (ТП) в соответствии с руководством по эксплуатации.
 - 6.4.1.6. Располагают эталон перед полостью АЧТ.
- 6.4.1.7. Устанавливают на эталоне коэффициент излучения, соответствующий коэффициенту излучения внутренней полости используемой вставки АЧТ.
- 6.4.1.8. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.4.1.9. После выхода калибратора на заданное значение температуры, а также достижения стационарного режима температуры по показаниям эталона, снимают показания эталона и внешнего ТС (ТП) в течение не менее 5 минут с интервалом не более 15 секунд в установившемся температурном режиме.
- 6.4.1.10. Повторяют операции по п.п. 6.4.1.8 6.4.1.9 для остальных поверяемых точек.
- 6.4.1.11. Рассчитывают погрешность установления заданной температуры ($\Delta_{AЧТ}$, °C) для каждой поверяемой точки по формуле 23:

$$\Delta_{\text{AYT}} = T_{\text{TC}} - T_{\text{9}} \tag{23}$$

где: T_{TC} – значение температуры по внешнему ТС (ТП), °С,

 T_{\ni} – среднее арифметическое значение температуры, измеренное эталоном, °C.

6.4.1.12. Полученные значения установления заданной температуры во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия..

6.4.2. Определение нестабильности поддержания заданной температуры

Определение нестабильности поддержания заданной температуры допускается проводить совместно с п. 6.4.1 «Определение поправки к показаниям внешнего ТС повышенной точности».

- 6.4.2.1. Устанавливают на калибраторе режим воспроизведения температуры по внешнему ТС или внутреннему ТС с включенным режимом измерений электрических сигналов, поступающих от ТП типа N по ГОСТ Р 8.585-2001 (только для модели ТА-1200Р).
- 6.4.2.2. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.4.2.3. Нестабильность определяют с помощью эталонного пирометра полного или частичного излучения 1-го разряда по ГОСТ 8.558-2009 (далее эталон) не менее, чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур калибратора и (или) в диапазоне измеряемых температур внешнего ТС (ТП) включая начало и конец диапазона.
 - 6.4.2.4. Помещают вставку АЧТ в калибратор.
- 6.4.2.5. Помещают в калибратор внешний ТС (ТП) в соответствии с руководством по эксплуатации.
 - 6.4.2.6. Располагают эталон перед полостью АЧТ.
- 6.4.2.7. Устанавливают на эталоне коэффициент излучения, соответствующий коэффициенту излучения внутренней полости используемой вставки АЧТ.
- 6.4.2.8. Задают необходимое значение температуры на калибраторе, соответствующее требуемой поверяемой температурной точке.
- 6.4.2.9. После выхода калибратора на заданное значение температуры, а также достижения стационарного режима температуры по показаниям эталона, снимают показания эталона в течение 15 минут с интервалом не более 15 секунд в установившемся температурном режиме.
- 6.4.2.10. Повторяют операции по п.п. 6.4.2.8 6.4.2.9 для остальных поверяемых точек.
- 6.4.2.11. Рассчитывают среднеквадратичное (стандартное) отклонение (СКО) для каждой поверяемой температурной точке (S_H , °C) по формуле 24:

$$S_{H} = \sqrt{\frac{\sum_{i=1}^{n} (T_{i} - \overline{T})^{2}}{n-1}}$$
 (24)

где: T_i – значение измеряемой температуры і-го измерения, °C;

 \overline{T} — среднее арифметическое значение измеряемой температуры в установившемся температурном режиме, °C;

і – порядковый номер измерения;

п- количество измерений

6.4.2.12. Рассчитывают нестабильность поддержания заданной температуры для каждой поверяемой температурной точке ($T_{\rm H}$, °C), как удвоенное значение СКО по формуле 25:

$$T_{\rm H} = 2 \cdot S_H \tag{25}$$

где: $S(T_{\rm H})$ – значение СКО для каждой поверяемой температурной точке, °С

6.4.2.13. Полученные значения нестабильности поддержания заданной температуры во всех контрольных точках не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия.

- 6.5. Проведение поверки с использованием встроенной платы для измерений электрических сигналов
 - 6.5.1. Определение основной абсолютной погрешности каналов измерений сопротивления внешнего ТС повышенной точности и рабочего ТС
- 6.5.1.1. Основную абсолютную погрешность каналов измерений сопротивления внешнего ТС и рабочего ТС определяют для 4-х проводной схемы подключения в не менее пяти контрольных точках, равномерно расположенных в диапазоне измерений сопротивления (в зависимости от канала измерений) включая начало и конец диапазона или в контрольных точках, близких к следующим значениям: 1; 10; 50; 100; 350 Ом (для канала внешнего ТС повышенной точности) и 1; 10; 50; 100; 350; 1000; 2700 Ом (для канала рабочего ТС).
- 6.5.1.2. Устанавливают калибратор в режим измерений сопротивления (для канала рабочего ТС) или в режим измерений по внешнему ТС (для канала внешнего ТС повышенной точности), отключив функцию установления температуры в калибраторе по внешнему ТС.
- 6.5.1.3. Устанавливают на многозначной мере электрического сопротивления (далее магазин сопротивлений) первое значение сопротивления и при помощи контрольных проводов, подают требуемое значение на поверяемый канал.
 - 6.5.1.4. Повторяют операции по п. 6.5.1.3 для остальных поверяемых точек.
- 6.5.1.5. Рассчитывают погрешность измерений сопротивления (Δ_{R_s} Ом) для каждой контрольной точки по формуле 26:

$$\Delta_R = R_K - R_{MC} \tag{26}$$

где: R_K – значение сопротивления, индицируемое на калибраторе, Ом,

 R_{MC} – значение сопротивления, подаваемое с магазина сопротивлений, Ом.

- 6.5.1.6. Повторяют операции по п.п. 6.5.1.3 6.5.1.5 для всех режимов измерений сопротивления.
- 6.5.1.7. Полученные значения измерений сопротивления для всех режимов не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) измерительного канала. После завершения процесса настройки проводят повторные операции по п.п. 6.5.1.3 6.5.1.5.

6.5.2. Определение основной абсолютной погрешности канала измерений напряжения постоянного тока

- 6.5.2.1. Абсолютную погрешность канала измерений напряжения постоянного тока определяют не менее, чем при пяти значениях, равномерно расположенных в диапазоне измерений, включая нижний и верхний пределы диапазона.
- 6.5.2.2. Устанавливают калибратор в режим измерений напряжения постоянного тока.
- 6.5.2.3. Устанавливают на калибраторе напряжений первое значение напряжения и при помощи медных проводов подают требуемое значение на поверяемый канал.
 - 6.5.2.4. Повторяют операции по п. 6.5.2.3 для остальных поверяемых точек.

6.5.2.5. Рассчитывают погрешность измерений напряжения (Δ_U , мВ) для каждой поверяемой точки по формуле 27:

$$\Delta_U = U_K - U_{KH} \qquad (27)$$

где: U_{κ} – значение напряжения, индицируемое на калибраторе, мВ,

 $U_{{\scriptscriptstyle KH}}$ – значение напряжения, подаваемое с эталонного калибратора напряжений, мВ.

6.5.2.6. Полученные значения измерений напряжения не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) измерительного канала. После завершения процесса настройки проводят повторные операции по п.п. 6.5.2.2-6.5.2.5.

6.5.3. Определение основной абсолютной погрешности канала измерений силы постоянного тока

- 6.5.3.1. Абсолютную погрешность канала измерений силы постоянного тока определяют не менее, чем при пяти значениях, равномерно расположенных в диапазоне измерений, включая нижний и верхний пределы диапазона.
 - 6.5.3.2. Устанавливают калибратор в режим измерений силы постоянного тока.
- 6.5.3.3. Устанавливают на калибраторе тока первое значение силы постоянного тока и при помощи контрольных проводов, подают ток на поверяемый канал.
 - 6.5.3.4. Повторяют операции по п. 6.5.3.3 для остальных поверяемых точек.
- 6.5.3.5. Рассчитывают погрешность измерений силы постоянного тока (Δ_I , мА) для каждой поверяемой точки по формуле 28:

$$\Delta_I = I_K - I_{KT} \tag{28}$$

где: $I_{\scriptscriptstyle K}$ — значение силы постоянного тока, индицируемое на калибраторе, мА,

 $I_{\it KT}\,$ – значение силы постоянного тока, подаваемое с эталонного калибратора тока, мА.

6.5.3.6. Полученные значения измерений силы постоянного тока не должны превышать предельно допустимых значений, указанных в Описании типа на Калибраторы температуры PRESYS, изготавливаемые фирмой «Presys Instrumentos e Sistemas Ltda.», Бразилия. В случае превышения предела допускаемой погрешности, оформляется извещение о непригодности в соответствии с п. 7.2 настоящей методики, либо по согласованию с пользователем, проводят в соответствии с руководством по эксплуатации настройку (рекалибровку) измерительного канала. После завершения процесса настройки проводят повторные операции по п.п. 6.5.3.3-6.5.3.5.

7. Оформление результатов поверки

- Приборы, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляется свидетельство о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. (или иным актуальным документом заменяющим его).
- 7.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. (или иным актуальным документом заменяющим его), оформляется извещение о непригодности, либо по согласованию с пользователем, проводится процедура рекалибровки (настройки) калибратора в соответствии с руководством по эксплуатации, после чего проводится повторная процедура поверки.

Разработали:

Научный сотрудник отдела метрологического обеспечения термометрии ФГУП «ВНИИМС»

Л.Д. Маркин

Заместитель начальника

отдела метрологического обеспечения термометрии

ФГУП «ВНИИМС»

Е.В. Родионова

Начальник

отдела метрологического обеспечения термометрии ФГУП «ВНИИМС»

А.А. Игнатов