Приложение № 10 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «7» октября 2020 г. № 1681

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозаторы весовые автоматические непрерывного действия ЛДНД

Назначение средства измерений

Дозаторы весовые автоматические непрерывного действия ЛДНД (далее — средства измерений), предназначены для измерений массы (непрерывного дозирования сыпучих материалов).

Описание средства измерений

Принцип действия средства измерений основан на использовании гравитационного притяжения. Сила тяжести объекта измерений (материала) вызывает деформацию чувствительного элемента средства измерений, которая преобразуется им в аналоговый электрический сигнал, пропорциональный массе объекта измерений. Этот сигнал подвергается аналого-цифровому преобразованию, математической обработке электронными устройствами средства измерений с дальнейшим определением значения массы объекта измерений.

На основе информации об измеренном значении массы в соответствии с предварительно заданной программой осуществляется автоматическое регулирование скорости движения конвейерной ленты либо потока управляемой задвижкой для поддержания заданного значения производительности.

Результаты измерений отображаются в визуальной форме на дисплее средства измерений и/или передаются в виде цифрового электрического сигнала через цифровой интерфейс связи на периферийные устройства.

Средство измерений представляет собой дозатор непрерывного действия по ГОСТ 30124-94 для дозирования сыпучих материалов и состоит из основных частей, указанных далее.

Грузоприемное устройство (далее — ГПУ) в зависимости от исполнения средства измерений представляет собой:

- рамную конструкцию, встроенную в ленточный конвейер (горизонтальный или наклоненный, максимальный угол наклона 18°) и опирающуюся на весоизмерительные тензорезисторные датчики (далее датчики), либо
- рамную конструкцию в составе формирующая воронка (лоток), опирающаяся на датчик, с отсекающей заслонкой и аспирационным кожухом.

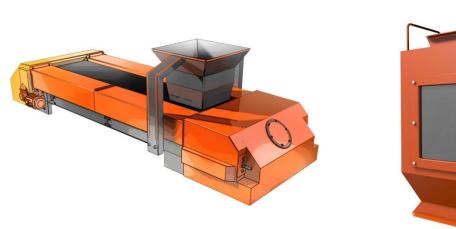
В составе ГПУ используются:

- датчики весоизмерительные тензорезисторные Single shear beam, Dual shear beam, S beam, Column модификации H8C (регистрационный № 55371-19);
- датчики весоизмерительные тензорезисторные Bend Beam, модификации L6C, L6F, H6G5, HM11, BM11 (Регистрационный № 55198-19);
- датчики весоизмерительные тензорезисторные SB, SQ, HSX, IL, U, AM, XSB, модификации HSX (регистрационный № 77382-20);
- датчики весоизмерительные тензорезисторные HLC, BLC, ELC, модификации HLC, изготовитель «Hottinger Baldwin Messtechnik GmbH», Германия (регистрационный N 21177-13):
- датчики весоизмерительные тензорезисторные Z6, модификации Z6C3, Z6C4, Z6C6, изготовитель «Hottinger Baldwin Messtechnik GmbH», Германия (регистрационный № 15400-13);

- датчики весоизмерительные тензорезисторные С и H, модификации H (регистрационный № 53636-13);
- датчики весоизмерительные тензорезисторные T, модификации T2, T4, T24AM1, T24AM2, T50M1, T60AM1 (регистрационный № 53838-13).

Электронные устройства, применяемые в составе средств измерений, представляют собой одно или несколько модулей, выполняющих функции устройства обработки аналоговых данных (далее — УОАД) и их первичной математической обработки и/или контроля и управления процессом автоматического дозирования:

- динамический преобразователь универсальный ДПУ, модификация ДПУ-00X-Ех, изготовитель ООО «ТД «ЗВО», Р. Башкортостан, г. Белорецк. ДПУ-00X-Ех используется в качестве УОАД совместно с весовым контроллером дозирующим ВКД-001, изготовитель ООО «ТД «ЗВО», Р. Башкортостан, г. Белорецк. В зависимости от исполнения средства измерений ДПУ-00X-Ех и ВКД-001 могут быть выполнены в едином корпусе;
- модуль многофункциональный SIWAREX WP241 (регистрационный №72345-18) используется в качестве УОАД совместно с контроллером программируемым SIMATICS7-1200 (регистрационный № 63339-16) и панелью оператора КТР400 Basic, изготовитель «Siemens AG», Германия, или «Siemens AG», Румыния. КТР оснащен сенсорным дисплеем, совмещающим функции показывающего устройства и клавиатуры управления средством измерений;
- приборы весоизмерительные INTECONT Opus, INTECONT Tersus (регистрационный № 53571-13).


ГПУ и УОАД составляют узел взвешивания, предоставляющий измерительную информацию о массе.

Электронные устройства, устройства коммутации размещены в электрическом шкафу (блоке управления). Сигнальные кабели датчиков подаются напрямую в УОАД или через соединительную коробку.

В зависимости от характеристик технологической линии, для использования в которой предназначено средство измерений, оно оснащается вибрационным, ленточным, роторным или шнековым питателем, формирующей воронкой с отсекающей заслонкой или другим типом питателя.

Общий вид средства измерений приведен на рисунке 1.

Схема пломбировки средства измерений от несанкционированного доступа приведена на рисунке 2.

ЛДНД-П Рисунок 1 — Общий вид ГПУ средства измерений (пример)

Рисунок 2 — Общий вид и схема пломбировки электронных устройств средства измерений от несанкционированного доступа (1 – место пломбировки)

Средства измерений выпускаются в модификациях, отличающихся метрологическими и техническими характеристиками в соответствии с таблицами 3, 4. Обозначение модификаций средства измерений имеет вид: ЛДНД-[1]-[2]-[3], где:

- 1 условное обозначение конструктивного исполнения ГПУ: Л (ленточный); Π (поточный);
- 2 значение наибольшего предела производительности (НПП), т/ч: 1; 2,5; 6,3; 10,0; 16,0; 25,0; 40,0; 63,0; 100,0; 250,0; 400,0; 630,0; 1000; 4000,0;
- 3 условное обозначение химической стойкости: 0 (стандартное); 1 (химически стойкое, применяется защитное лакокрасочное покрытие); 2 (пищевое, элементы дозатора изготовлены из нержавеющей стали).

Маркировочная табличка содержит следующие основные данные:

- наименование изготовителя;
- знак утверждения типа;
- наибольший предел производительности (НПП);
- наименьший предел производительности (НмПП);
- пределы допускаемой погрешности;
- обозначение модификации;
- заводской номер;
- месяц и год изготовления;
- обозначение технических условий;
- вид дозируемого материала.

Программное обеспечение

Программное обеспечение (далее — ПО) средства измерений имеет метрологически значимую и метрологически незначимую (функциональную) части.

Метрологически значимая часть ΠO является встроенной, хранится в энергонезависимом запоминающем устройстве контроллера ВКД-001 или измерительных модулей для SIMATIC S7-1200.

Для защиты от несанкционированного доступа к метрологически значимой части ПО, параметрам регулировки и измерительной информации используется:

- разграничение прав доступа с помощью пароля (INTECONT Opus, INTECONT Tersus, SIMATIC S7-1200);
- механическая пломба, ограничивающая доступ к калибровочному разъему и печатной плате внутри корпуса (ВКД-001) или переключателю настройки регулировки (SIWAREX WP241).

Кроме того, изменение ΠO без применения специализированных средств изготовителя невозможно.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования изготовителя, а также без изменения его идентификационных данных.

Изменение ПО через интерфейс пользователя невозможно.

Идентификационные данные ПО ВКД-001 доступны для просмотра при включении средства измерения, идентификационные данные ПО INTECONT Opus, INTECONT Tersus также доступны для просмотра в соответствующем разделе меню в соответствии с эксплуатационной документацией. ПО ДПУ не доступно для просмотра и не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после загрузки. Доступ к просмотру и изменению метрологически значимых параметров осуществляется только с применением специализированного оборудования производителя.

Идентификационные данные ПО приведены в таблице 1.

Защита ПО от непреднамеренных и преднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014.

Таблица 1 — Идентификационные данные ПО

Hyangyahanaanaanaanaanaanaanaanaanaanaanaanaan	Значение		
Идентификационные данные (признаки)	INTECONT	INTECONT	
(признаки)	Opus	Tersus	
Идентификационное	VEG2062y	VEG 20650	
наименование ПО	VKG2076y		
Номер версии	VBW20yyy	Vxx 206y0	
(идентификационный номер) ПО*			
Цифровой идентификатор ПО			
*«х», «у» – обозначения версии метрологически незначимой части ПО; «х» принимает			

*«х», «у» — обозначения версии метрологически незначимой части ПО; «х» принимает буквенные значения от A - Z, «у» — числовые значения от 0 до 9

Таблица 2 — Идентификационные данные ПО

таолица 2 пидентификационные данные то				
Идентификационные данные	Значение			
(признаки)	ВКД-001	SIWAREX WP241	SIMATIC	S7-1200
Илантификаннали		FW 7MH4961-	STEP 7 Basic	STEP 7
Идентификационное наименование ПО		4AA01	(TIA Portal)	Professional
				(TIA Portal)
Номер версии (идентификационный номер) ПО*	U.0200XXX	V1.0.1	V 13	V13
Цифровой идентификатор ПО			номер в	ерсии
1				

* «XXX» – обозначение версии метрологически незначимой части ПО, принимает числовые значения от 000 до 999

Метрологические и технические характеристики

Таблица 3 — Метрологические характеристики

Tuoimqu 5 Triesposiosin teekine kupuktephetiikii	
Наименование	Значение
Наибольший предел производительности (НПП), т/ч	1; 2,5; 6,3; 10,0; 16,0; 25,0; 40,0; 63,0;
	100,0; 250,0; 400,0; 630,0; 1000; 4000,0
Наименьший предел производительности, т/ч	0,1∙НПП
Пределы допускаемой погрешности от наибольшего	
предела производительности при условии	$\pm 0,25;\pm 0,5;\pm 1;\pm 2$
непрерывной работы дозатора в течение 6 мин, %	
Применацие значения пределов попускаемой по	orneumoctu una kompetnoro ofinazua

Примечание — значения пределов допускаемой погрешности для конкретного образца средства измерений определяются при первичной поверке (вводе в эксплуатацию). Вид дозируемого материала указывается на маркировочной табличке средства измерений.

Таблица 4 — Основные технические характеристики

Таблица 4 — Основные технические характеристики	
Наименование	Значение
Дискретность отсчета (d) , кг	1; 2; 5
Диапазон температур, °С:	
– для ГПУ при использовании датчиков:	
- H, T2, T4, T24AM1, T24AM2, T50M1, T60AM1,	
L6C, L6F, H6G5, HM11, BM11	от –10 до +40
- HLC	от –30 до +40
- Z6	от –30 до +50
- H8C	от –30 до +50
- HSX	от –40 до +40
– для электронных устройств:	
- SIWAREX WP241, SIMATIC S7-1200	от –10 до +40
- INTECONT Opus, INTECONT Tersus	от –30 до +60
- ВКД-001, ДПУ-00Х-Ех	от –40 до +40
Параметры электрического питания от трехфазной сети	
переменного тока:	
- напряжение, В	$380^{+10\%}_{-15\%}$
- частота, Гц	50±1
Параметры электрического питания от однофазной	
сети переменного тока:	
- напряжение, В	$220^{+10\%}_{-15\%}$
- частота, Гц	50±1
Ширина конвейерной ленты, мм, не более	2500
Габаритные размеры ГПУ, мм, не более	
длина	10000
ширина	3000
высота	1000
Масса, кг, не более	10000

Знак утверждения типа

наносится на маркировочную табличку, расположенную на боковой стенке ГПУ методом гравировки и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество
Дозатор весовой автоматический непрерывного		1 шт.
действия ЛДНД		
Руководство по эксплуатации. Паспорт	УЗВО.40462.001	1 экз
Руководство оператора или руководства электронных	_	1 экз
устройств		

Поверка

осуществляется по документу ГОСТ 8.469-2002 «ГСИ. Дозаторы автоматические весовые непрерывного действия. Методика поверки».

Основные средства поверки:

- весы неавтоматического действия (весы для статического взвешивания) с пределами допускаемой погрешности не менее чем в 3 раза меньше пределов допускаемой погрешности средства измерений (рабочие эталоны 4-го или 5-го разряда по приказу Росстандарта от 29 декабря 2018 г № 2818 «Об утверждении Государственной поверочной схемы для средств измерений массы»);
 - секундомер в соответствии с ГОСТ 8.469-2002.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке средства измерений.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации

Нормативные и технические документы, устанавливающие требования к дозаторам весовым автоматическим непрерывного действия ЛДНД

ГОСТ 30124-94 «Весы и весовые дозаторы непрерывного действия. Общие технические требования»

Приказ Росстандарта от 29 декабря 2018 г № 2818 «Об утверждении Государственной поверочной схемы для средств измерений массы»

ГОСТ 8.469-2002 «ГСИ. Дозаторы автоматические весовые непрерывного действия. Методика поверки»

ТУ 26.51.66-004-61182529-2019 «Дозаторы весовые автоматические непрерывного действия ЛДНД. Технические условия»

Изготовитель

Общество с ограниченной ответственностью «Торговый дом «Завод весового оборудования» (ООО «ТД «ЗВО»)

ИНН 0256021017

Адрес: 453502, Республика Башкортостан, г. Белорецк, ул. Блюхера, 86

Тел./факс: +7 (34792) 4-82-66

Web-сайт: www.uzvo.ru E-mail: umi.info@yandex.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: +7 (495) 437-55-77/ 437-56-66

Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 29.03.2018 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

		А.В. Кулешов
М.п.	« »	2020 г.