Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им. Д. И. Менделеева»

УТВЕРЖДАЮ

И.о. генерального директора

ФГУП «ВНИИМ им. ДИ. Менделеева»

А.Н. Пронин

млг. «15» игод

2020 r.

Государственная система обеспечения единства измерений

Осмометры-криоскопы ОСКР-1

Методика поверки

МП 244-0006-2020

И.о. руководителя НИО госэталонов и стандартных образцов в области биоаналитических и медицинских измерений ФГУП «ВНИИМ им. Д.И.Менделеева» ______ М.С. Вонский

Руководитель отдела координации работ по испытаниям средств измерений, главный метролог ФГУП «ВНИИМ им. Д.И.Менделеева» О.В. Тудоровская

Инженер I категории А.Л. Рунов

г. Санкт-Петербург 2020 г.

Настоящая методика распространяется на «Осмометры-криоскопы ОСКР-1», изготовленные «Индивидуальный предприниматель Кирсанов Владимир Иванович», Адрес: Россия, Санкт-Петербург, ул. Ворошилова, 7 к.2 кв.9, телефон/факс: +7 (906) 256-29-79

Приборы подлежат первичной и периодической поверке.

1. Операции поверки

Объем и последовательность операций поверки указаны в таблице 1.

Таблица 1

Наименование операции	Номер пункта, в котором	Обязательность проведения операции		
	изложена методика поверки	При первичной поверке	При периодической поверке	
1. Внешний осмотр	п. 7.1	Да	Да	
2. Опробование	п. 7.2	Да	Да	
3.Подтверждение соответствия программного обеспечения	п. 7.3	Да	Да	
4. Определение метрологических характеристик:				
4.1. Определение абсолютной основной погрешности при измерении криоскопическим методом эффективных (осмотических) концентраций и температур замерзания водных растворов.	п. 7.4	Да	Да	

При получении отрицательных результатов при проведении той или иной операции дальнейшая поверка прекращается.

2.Средства поверки

2.1 При проведении поверки применяются средства измерений и оборудование, представленное в таблице 2.

Таблица 2

Наименование	Характеристики
Реактивы	
Натрий хлористый х.ч.	ГОСТ 4233-77
Вода дистиллированная	ГОСТР 52501-2005
Средства измерений и вспомогательное оборудование	
Дозатор пипеточный 1-канальный с варьируемым объемом дозирования Eppendorf Research Plu фирмы «Eppendorf-Netheler-Hinz GmbH», Германия (рег. № 55543-13)	_ per.№ 43129-13
MB210-A с дискретностью ±0,1 мг	per. № 61317-15
Бумага фильтровальная	ГОСТ 12026-76

Продолжение Таблицы 2		
Наименование	Характеристики	
Эксикатор 2-190	ΓΟCT 25335-82	
Стеклянные флаконы или полиэтиленовая посуда с		
плотно закрывающимися крышками вместимостью		
1 л, 6 штук.		
Электрошкаф сушильный лабораторный,		
обеспечивающий температуру нагрева от 50 до	T У 16-531.639-78	
150 °C		
Стеклянные химические стаканы В-2-50 объемом	ΓOCT 25336	
50 мл, 6 шт.		
Колбы мерная 2а-1000-2 с пластиковой пробкой, 6	ΓΟCT 1770-74	
штук		
Лодочки фарфоровые для прокаливания ЛС-4	ΓOCT 9147	
Силикагель	ΓΟCT 3956	

- 2.2 Допускается применять средства, не приведенные в перечне, но обеспечивающие определение метрологических характеристик с требуемой точностью.
- 2.3 Все средства поверки должны иметь действующие свидетельства о поверке.

3. Требования к квалификации поверителей

- К работе допускается персонал, прошедший инструктаж и имеющий опыт работы с оборудованием, реактивами и средствами измерений, представленными в Таблице 2. Для получения данных по поверке допускается участие операторов, обслуживающих прибор (под контролем поверителя).

4. Требования безопасности

- 4.1. Требования безопасности должны соответствовать рекомендациям, изложенным в руководстве по эксплуатации на прибор.
- 4.2. При выполнении поверки соблюдают правила техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76, требования электробезопасности по ГОСТ 12.1.019-79 и пожаробезопасности по ГОСТ 12.1.004-91.

5. Условия поверки и подготовка к ней

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха: от 18 до 30 °C
- относительная влажность воздуха: от 20% до 80 %
- атмосферное давление: от 84 кПа до 106,7 кПа
- отклонение напряжения питания от номинального значения (220 ± 22) В

6. Подготовка к поверке

- 6.1 Подготовить устройство к работе в соответствии с технической документацией фирмы-изготовителя.
- 6.2 Приготовление калибровочных растворов в соответствии с ГСССД №154-91:
- 6.2.1 Взвесить на весах 350,0±0,1 г хлористого натрия.
- 6.2.2 Поместить навеску в емкости для прокаливания в сушильный электрошкаф на 2ч, постепенно увеличивая температуру прокаливания до 150 °C, периодически (каждые 30 минут) охлаждая в эксикаторе с влагопоглотителем (например, с силикагелем) до комнатной температуры и взвешивая его до получения постоянной массы (пока расхождение между двумя последними взвешиваниями не будет превышать 0,004 г;
- 6.2.3 Поместить препарат в эксикатор с влагопоглотителем, например, силикагелем, охладить до комнатной температуры;
- 6.2.4 Подготовить и подписать 6 стеклянных химических стаканов вместимостью 50 мл и 6 мерных колб объемом 1000 мл для приготовления растворов хлорида натрия с концентрацией 100, 300, 500, 1000, 1500 и 2000 ммоль/кг H_2O .

- $6.2.4~\mathrm{B}$ химических стаканах вместимостью $50~\mathrm{cm}^3$ взвесить навеску хлорида натрия. Массу навески хлорида натрия выбирают в соответствии с Таблицей 3 (результат взвешивания записывают до 4 десятичного знака). Массы навесок для получения концентрации хлорида натрия $100,\ 300,\ 500,\ 1000,\ 1500$ и 2000 ммоль/кг H_2O составляют $3,101,\ 9,511,\ 16,00,\ 32,28,\ 48,47$ и 64,48 г соответственно (см. Таблицу 3).
- 6.2.5 Количественно перенести навески хлорида натрия в мерные колбы, долить дистиллированной водой до метки, закрыть пробкой и тщательно перемешать.
- 6.2.6 Перелить растворы в плотно закрывающиеся стеклянные или полиэтиленовые емкости, хранить в затемненном месте при температуре 20±5 °C не более 6 месяцев. В случае помутнения раствора, появления хлопьев или осадка растворы не использовать и заменить свежеприготовленными.

Таблица 3

Значение концентрации,	Температура замерзания, °С	Масса навески, г*
ммоль/кг H ₂ O		
30	-0,056	0,911
100	-0,1860	3,101
200	-0,3720	6,290
	-0,500	8,511
300	-0,5580	9,511
400	-0,7440	12,75
500	-0,930	16,00
	-1,000	17,224
750	-1,395	24,14
1000	-1,860	32,28
1200	-2,232	38,77
1500	-2,790	48,47
1800	-3,348	58,11
2000	-3,720	64,48

^{*} Значения навесок хлорида натрия для соответствующих концентраций определены таблицами ГСССД 154-91 "ВОДНЫЕ РАСТВОРЫ ХЛОРИДОВ НАТРИЯ И КАЛИЯ. ПОНИЖЕНИЯ ТЕМПЕРАТУРЫ ЗАМЕРЗАНИЯ И ЭФФЕКТИВНЫЕ (ОСМОТИЧЕСКИЕ) КОНЦЕНТРАЦИИ".

7. Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности модулей требованиям технической документации;
- четкость маркировки:
- исправность механизмов и крепежных деталей.

Устройство считается выдержавшим внешний осмотр, если он соответствует перечисленным выше требованиям. Устройство с механическими повреждениями к поверке не допускаются.

7.2 Опробование

7.2.1 В соответствии с указаниями Руководства по эксплуатации включить прибор. Результаты проверки общей работоспособности прибора считаются положительными, если при нажатии кнопки включения «СЕТЬ» на передней панели прибора включится красный светодиод «ТЕРМОСТАТ» и на дисплее спустя некоторое время отобразится главное меню.

7.3 Подтверждение соответствия программного обеспечения.

Операция «Подтверждение соответствия программного обеспечения» состоит в определении номера версии встроенного программного обеспечения.

Просмотр версии встроенного ПО доступен в пункте главного меню «О приборе». Меню «О приборе» содержит информацию о версии ПО, установленного в контроллер прибора, его контрольной сумме (с указанием алгоритма подсчета).

Устройство считается прошедшим поверку, если номер версии совпадает с номером версии или выше номера версии, указанного в описании типа.

7.4 Определение метрологических характеристик прибора проводится в режимах осмометра и криоскопа.

- 7.4.1 Подготовка термодатчика и иглы прибора к работе.
- 7.4.1.1 Проверить визуально правильность установки иглы вибромешалки и термодатчика, для чего:
- убедиться, что конец иглы находится на одном уровне с концом термодатчика и на расстоянии 0.5 1.5 мм от него;
- налить пипеткой в пробирку 300 мкл. дистиллированной воды, аккуратно надеть пробирку на оправку измерительной головки, убедиться, что конец термодатчика при этом располагается в центре пробы и не касаться дна пробирки.
- 7.4.1.2 Перед проведением измерений термодатчик и иглу прибора промыть дистиллированной водой. Для этого измерительную пробирку наполнить на 0,5 объема дистиллированной водой с температурой 20±2 °C, надеть пробирку на термодатчик и несколько раз погрузить термодатчик и иглу в дистиллированную воду, осторожно покачивая пробирку. Пробирку убрать, остатки воды с термодатчика и иглы осторожно удалить фильтровальной бумагой.
- 7.4.2 Калибровка прибора в режиме осмометра и криоскопа.

Подготовить прибор к работе в соответствии с разделом 9 РЭ;

7.4.2.1 Откалибровать прибор по растворам хлористого натрия с концентрацией 0, 500 и 2000 ммоль/кг H_2O в соответствии с пунктом 10.7 PЭ;

Калибровка прибора:

- 7.4.2.1.1 Провести калибровку прибора в точке ноль, для чего:
- подготовить термодатчик и иглу к первому измерению согласно п. 10.4 РЭ и в соответствии с рекомендациями п. 10.8 РЭ;
- приготовить пробу, налив в чистую и сухую пробирку 300 мкл дистиллированной воды;
- провести несколько измерений (не менее трех) и получить на дисплее усредненное значение и оценку сходимости. При проведении повторного измерения заменить объем пробы в пробирке новым;
- закончить калибровку в нулевой точке, если полученная оценка сходимости (**СКО**) не превышает 2 ммоль/кг H_2O или продолжить измерения, соблюдая рекомендации п. 10.8, пока значение оценки сходимости не уложится в допустимые пределы, указанные выше.
- 7.4.2.1.2 Провести калибровку прибора в точке 500 ммоль/кг H₂O по методике, описанной выше.

Закончить калибровку в выбранной точке, если полученная оценка сходимости (**СКО**) не превышает 2 ммоль/кг H_2O или продолжить измерения, соблюдая рекомендации пункта 10.8, пока значение оценки сходимости не уложится в допустимые пределы.

7.4.2.1.3 Провести калибровку прибора в точке 2000 ммоль/кг H₂O по методике, описанной выше.

Закончить калибровку в выбранной точке, если полученная оценка сходимости (**СКО**) не превышает 5 ммоль/кг H_2O или продолжить измерения, соблюдая рекомендации пункта 10.8, пока значение оценки сходимости не уложится в допустимые пределы.

- 7.4.2.2 Калибровка прибора в режиме криоскопа по растворам с температурами замерзания $0,000~^{\circ}\text{C}$; $-0,930~^{\circ}\text{C}$ и $-3,720~^{\circ}\text{C}$ производится аналогично калибровке прибора в режиме *осмометра*. (пп. 7.4.2.1.1-7.4.2.1.3)
- 7.4.3 Определение метрологических характеристик в режиме осмометра.

- 7.4.3.1 перевести прибор в режим осмометра, для этого в главном меню перейти в пункт «НАСТРОЙКИ», выбрать в открывшимся списке пункт «ОПЦИИ», далее выбрать пункт «РЕЖИМ РАБОТЫ»; в нем выбрать режим работы прибора «ОСМОМЕТР».
- в чистую сухую пробирку дозатором набрать 300 мкл раствора с концентрацией 100 ммоль/кг H₂O, закрепить ее на цилиндрической оправке измерительной головки, при этом датчик температуры пробы и игла вибромешалки должны быть погруженными в раствор;
- ИГ устанавливают в рабочее положение и фиксируют ловителем, при этом пробирка размещается в шахте термостата, а ее кончик в концентраторе тепла;
- в главном меню прибора выбрать пункт «Измерение» и нажать на «Д».
- на экране отобразится текущая температура в термостате $T_{\text{терм.}}$, текущая температура пробы $T_{\text{пробы}}$ и диалог «**Начать измерение?**».
- выбрать ответ «Да» (стоит по умолчанию) и нажать на «Ф», что переводит прибор в режим измерения осмотической концентрации.
- нажимают клавишу ««Д»;
- В ходе измерения на дисплее отображается текущая температура пробы и температура термостата, а также сообщение «ИДЕТ ИЗМЕРЕНИЕ».
- 7.4.3.2 Записать результат измерения концентрации, полученный на табло прибора по окончанию цикла измерения, извлечь пробирку, тщательно промыть и просушить;
- 7.4.3.3 Для получения оценки основной абсолютной погрешности прибора проводят по 10 измерений каждого указанного раствора (пробирку тщательно промыть и высушить перед каждым измерением).
- 7.4.3.4 Повторить пункты 7.4.3.1 7.4.3.3 с растворами хлорида натрия с концентрациями 300, 500, 1000, 1500 и 2000 ммоль/кг H_2O .
- 7.4.3.5 Результаты измерений занести в Таблицу 4:

Таблина 4

Наименование					измер	ений				Значения действительной	
измеряемых характеристик	1	2	3	4	5	6	7	8	9	10	величины по ТУ
Концентрация, ммоль/кг H ₂ O											100
при								_			300
температуре											500
20 °C через 25 мин. после											1000
включения прибора											1500
											2000

7.4.3.6 Рассчитать абсолютные основные погрешности (Δ mi) при измерении концентрации в диапазоне от 0 до 500 ммоль/кг H_2O (в точках 100 и 300 ммоль/кг H_2O) и измерении концентрации в диапазоне от 500 до 2000 ммоль/кг H_2O (в точках 1000, 1500 и 2000 ммоль/кг H_2O), определяемые как разности между показаниями прибора и действительными значениями измеряемых величин.

Основную абсолютную погрешность в точках 100, 300, 1000, 1500 и 2000 ммоль/ кг H_2O определяют по формуле:

 $\Delta m_i = m_i - m_{HOM}$, ммоль/кг H_2O ,

где mi - измеренное значение концентрации калибровочного раствора, ммоль/кг H_2O ; $m_{\text{ном}}$ - значение концентрации калибровочного раствора, ммоль/кг H_2O

і = от 1 до 10 - количество однократных измерений;

 Δm_i - погрешность однократного измерения, ммоль/кг H_2O

Результаты вычисления заносится в протокол.

- 7.4.4 Определение метрологических характеристик в режиме криоскопа.
- 7.4.4.1 Перевести прибор в режим криоскопа, для этого в главном меню перейти в пункт «НАСТРОЙКИ», выбрать в открывшимся списке пункт «ОПЦИИ», далее выбрать пункт «РЕЖИМ РАБОТЫ»; в нем выбрать режим работы прибора «КРИОСКОП».
- 7.4.4.1 В чистую сухую пробирку дозатором набрать 300 мкл раствора с температурой замерзания -0,186 °C, закрепить ее на цилиндрической оправке $\mathbf{U}\Gamma$, при этом датчик температуры пробы и игла вибромещалки должны быть погруженными в раствор;
- ИГ устанавливают в рабочее положение и фиксируют ловителем, при этом пробирка размещается в шахте термостата, а ее кончик в концентраторе тепла;
- в главном меню прибора выбрать пункт «Измерение» и нажать на «🗗».
- на экране отобразится текущая температура в термостате $T_{\text{терм.}}$, текущая температура пробы $T_{\text{пробы}}$ и диалог «Начать измерение?».
- выбрать ответ «Да» (стоит по умолчанию) и нажать на «Ф», что переводит прибор в режим измерения температуры замерзания.
- нажимают клавишу « 🗗 »;
- В ходе измерения на дисплее отображается текущая температура пробы и температура термостата, а также сообщение «ИДЕТ ИЗМЕРЕНИЕ».
- -По окончании измерения на дисплей выводится надпись «ИЗМЕРЕНИЕ», измеренное значение температуры замерзания или осмотической концентрации (согласно выбранного режима работы), а также среднее значение и оценка среднего квадратического отклонения (СКО) по **n** измерениям
- 7.4.4.2 Записать результат измерения температуры замерзания, полученный на табло прибора по окончанию цикла измерения, извлечь пробирку, тщательно промыть и просушить;
- 7.4.4.3 Для получения оценки основной абсолютной погрешности прибора проводят по 10 измерений каждого указанного раствора (пробирку тщательно промыть и высушить перед каждым измерением).
- 7.4.4.4 Повторить пункты 7.4.3.1 7.4.3.3 с растворами хлорида натрия с температурами замерзания минус 0,186 °C, минус 0,558 °C, минус 0,930 °C, минус 1,860 °C; минус 2,790 °C и минус 3,720 °C.
- 7.4.4.5 Результаты измерений занести в Таблицу 5:

Таблица 5

Наименование	Номера измерений					ний				Значения	
измеряемых характеристик	1	2	3	4	5	6	7	8	9	10	действительной величины по ТУ, ⁰ С
											-0,186
Температура замерзания,											-0,558
⁰ С при температуре							_	-			-0,930
20 °C через 25 мин. после											-1,860
включения прибора.											- 2,790
											-3,720

7.4.4.6 Рассчитать абсолютные основные погрешности (Δmi) при измерении температуры замерзания в диапазоне от 0,000 до минус 0,930 °C (в точках минус 0,186 и минус 0,558 °C) и измерении температуры замерзания в диапазоне от минус 0,930 °C до минус 3,720 °C (в точках минус 1,860; 2,790 и минус 3,720 °C), определяемые как разности между показаниями прибора и действительными значениями измеряемых величин.

Основной абсолютную погрешность для диапазона измерений температуры замерзания от 0 до 3,720 °C в указанных точках определяют по формуле:

$$\Delta t_i = t_i - t_{HOM}$$
, °C

где

t_i - измеренное значение температуры замерзания;

t_{ном} - значение температуры замерзания калибровочного раствора, °С;

і = от 1 до 10 - количество однократных измерений;

 Δt_i - погрешность однократного измерения, °С;

Результаты вычисления заносится в протокол.

- 7.4.5 Прибор считается прошедшим поверку по п. 7.4.3, если абсолютные погрешности (Δm_i) при измерении концентрации в диапазоне от 0 до 500 ммоль/кг H_2O (в точках 100 и 300 ммоль/кг H_2O) и измерении концентрации в диапазоне от 500 до 2000 ммоль/кг H_2O (в точках 1000, 1500 и 2000 ммоль/кг H_2O) не выходят за пределы соответственно ± 2 ммоль/кг H_2O и ± 10 ммоль/кг H_2O .
- 7.4.6 Прибор считается прошедшим поверку по п. 7.4.4, если абсолютные основные погрешности при измерении температуры замерзания в диапазоне от 0,000 до минус 0,930 °C (в точках минус 0,186 и минус 0,558 °C) и измерении температуры замерзания в диапазоне от минус 0,930 °C до минус 3,720 °C (в точках минус 1,860; 2,790 и минус 3,720 °C) не выходят за пределы соответственно $\pm 0,004$ °C и $\pm 0,020$ °C (согласно ТУ п. 1.3.2).
- 7.4.7 Прибор считается полностью прошедшим поверку при удовлетворении всех требований, изложенных в пп. 7.4.5-7.4.6.

8. Оформление результатов поверки

- 8.1. При проведении поверки составляется протокол результатов измерений по форме Приложения А.
- 8.2. Результаты поверки считаются положительными, если прибор удовлетворяет всем требованиям настоящей методики. Положительные результаты поверки оформляются путем выдачи свидетельства о поверке установленной формы. Знак поверки рекомендуется наносить на свидетельство о поверке или на корпус прибора.
- 8.3. Результаты считаются отрицательными, если при проведении поверки установлено несоответствие поверяемого прибора хотя бы одному из требований настоящей методики. Отрицательные результаты поверки оформляются путем выдачи извещения о непригодности с указанием причин непригодности.

ПРОТОКОЛ ПОВЕРКИ

№

от XX.XX.20XX

Таблица А1

	т аолица тт
Наименование прибора, тип	
Регистрационный номер в Федеральном	
информационном фонде по обеспечению	
единства измерений (ОЕИ)	
Заводской номер (если имеется информация)	
Изготовитель (если имеется информация)	
Год выпуска (если имеется информация)	
Заказчик (наименование и адрес)	
Серия и номер знака предыдущей поверки (если	
такие имеются)	
D	

Вид поверки_

Методика поверки_

Средства поверки: Растворы хлорида натрия (ГОСТ 4233-77), приготовленные в соответствии с Таблицей 3 согласно ГСССД 154-91.

Условия поверки:

Параметры	Требования НД	Измеренные значения
Температура окружающего воздуха, °С	от 18 до 30	
Относительная влажность воздуха, %	от 30 до 80	
Атмосферное давление, кПа	от 84,0 до 106,7	

Результаты поверки:

- 1. Внешний осмотр_____
- 2. Опробование_____
- 3. Подтверждение соответствия ПО_____
- 4. Определение метрологических характеристик (в соответствии с требованиями НД на методы и средства поверки)

Таблица А2

Наименование параметра/единица измерений	Значение абсолютной основной погрешности, полученное при поверке	Предел допускаемого значения абсолютной основной погрешности
Концентрация хлорида натрия в растворе в диапазоне от 0 до 500 ммоль/кг H ₂ O (в точках 100 и 300 ммоль/кг H ₂ O)		±2 ммоль/кг Н ₂ О
Концентрация хлорида натрия в растворе в диапазоне от 500 до 2000 ммоль/кг H ₂ O (в точках 1000,1500 и 2000 ммоль/кг H ₂ O)		±10 ммоль/кг Н2О

Наименование параметра/единица измерений	Значение абсолютной основной погрешности, полученное при поверке	Предел допускаемого значения абсолютной основной погрешности
Температура замерзания растворов хлорида натрия диапазоне от 0,000 до минус 0,930 °C (в точках минус 0,186 °C и минус 0,558 °C)		± 0,004 °C
Температура замерзания растворов хлорида натрия в диапазоне от минус 0,930 °C до минус 3,720 °C (в точках минус 1,860 °C; минус 2,790 и минус 3,720 °C)		±0,020 °C

5. Пополнителя ная информация (состояния	объекта поверки, сведения о ремонте, юстировке)
э. дополнительная информация (состояние	ооъекта поверки, сведения о ремонте, юстировке)
На основании рез	зультатов поверки выдано:
свидетельство о поверке №	от
Поверку произвел	от
ФИО	Подпись Дата