ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Рефлектометры оптические FOD-7005-035

Назначение средства измерений

Рефлектометры оптические FOD-7005-035 (далее по тексту – рефлектометры) предназначены для измерений ослабления в одномодовых и многомодовых оптических волокнах и их соединениях, длины (расстояния) до мест неоднородностей, оценки неоднородностей оптического кабеля и измерений мощности оптического излучения.

Описание средства измерений

Принцип действия рефлектометров основан на зондировании волоконно-оптической линии последовательностью коротких оптических импульсов и измерении параметров сигнала, отраженного от неоднородности, и сигнала обратного рассеяния, т.е. сигналов френелевского отражения и релеевского рассеяния. В результате обработки этих сигналов на дисплее прибора формируется рефлектограмма зондируемого световода, показывающая распределение ослабления по его длине и индицирующая наличие стыков и обрывов.

Рефлектометр включает в себя встроенный измеритель оптической мощности. Принцип действия измерителя оптической мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму.

Рефлектометр оборудован визуальным детектором повреждений, работающим на длине волны 635 нм, позволяющим оценить целостность волоконно-оптической линии.

Конструктивно рефлектометр выполнен в прямоугольном корпусе в виде переносного прибора. Основные элементы управления рефлектометра расположены на передней панели. На верхней панели расположены оптические разъемы:

- одномодовый разъем рефлектометра, оборудованный адаптером FC;
- многомодовый разъем рефлектометра, оборудованный адаптером ST;
- разъем измерителя оптической мощности, оборудованный универсальным 2,5 мм адаптером;
- разъем источника излучения видимого света для проверки целостности волоконнооптической линии и определения изгибов оптического волокна, оборудованный универсальным 2,5 мм адаптером.

По заказу потребителя рефлектометр может комплектоваться дополнительными сменными адаптерами типов FC, ST, SC, LC с возможностью их взаимной замены в процессе эксплуатации.

Для предохранения от ударов и повреждений корпус рефлектометра снабжен защитным резиновым кожухом.

Для сохранения результатов измерений в рефлектометр установлена SD-карта, позволяющая сохранять не менее 1000 рефлектограмм.

Для ограничения доступа внутрь корпуса прибора производится его пломбирование. Пломбируется место соприкосновения передней и задней панелей корпуса на нижней стороне прибора.

Общий вид рефлектометров оптических FOD-7005-035 и задняя панель представлены на рисунках 1 и 2.

Рисунок 1 - Общий вид рефлектометров оптических FOD-7005-035

Рисунок 2 – Задняя панель

Программное обеспечение

Программное обеспечение (далее по тексту — Π O), входящее в состав рефлектометров, выполняет функции отображения на экране прибора информации в удобном для оператора виде, а также задания условий измерений. Π O разделено на две части.

Метрологически значимая часть ПО прошита в памяти микроконтроллера прибора. Интерфейсная часть ПО запускается на приборе и служит для отображения, обработки и сохранения результатов измерений.

Идентификационные данные (признаки) метрологически значимой части программного обеспечения указаны в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	QUA2-00-0794_RevG_v2.2.41.zip
Номер версии (идентификационный номер) ПО	2.2.41.0
Цифровой идентификатор ПО	80064c570785de57450a9ac74ea7b512
Алгоритм вычисления цифрового идентификатора ПО	md5

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует среднему уровню защиты в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2

таолица 2		
Наименование характеристики	Значение характеристики	
Тип волокна	одномодовое 9/125 мкм, многомодовое 50/125 мкм	
Рабочие длины волн, нм		
- в одномодовом режиме	1310 ± 20 ; 1550 ± 30 ;	
- в многомодовом режиме	850 ± 20 ; 1300 ± 30	
	при длительности импульса 20 мкс:	
Динамический диапазон измерений	- для длины волны 1310 нм: 37	
ослабления ¹ , дБ, не менее,	- для длины волны 1550 нм: 36	
(усреднение 3 мин, по уровню 98 % от	при длительности импульса 1 мкс:	
максимума шумов)	- для длины волны 850 нм: 29	
	- для длины волны 1300 нм: 29	
Пределы допускаемой абсолютной	$\Delta A = \pm 0.05 \cdot A$,	
погрешности измерений ослабления, дБ	где А – измеряемое ослабление, дБ	
Диапазоны измеряемых длин, км	0 - 0,25; 0 - 0,5; 0 - 1; 0 - 1,5; 0 - 2; 0 - 3;	
	0 - 4; 0 - 7,5; 0 - 10; 0 - 15; 0 - 30; 0 - 60;	
	0 - 120; 0 - 240	
Пределы допускаемой абсолютной	$DL = \pm (dl + L \cdot \Delta n/n + 5 \cdot 10^{-5}L),$	
погрешности при измерении длины, м	где dl - составляющая погрешности	
	вследствие смещения шкалы длин, м,	
	dl = 1 м в диапазонах $0 - 0.25$; $0 - 0.5$; $0 - 1$;	
	0 - 1,5; 0 - 2; 0 - 3; 0 - 4 км;	
	dl = 1,5 м в диапазонах 0 - $7,5$; 0 - 10 ;	
	0 - 15 км;	

	dl = 3.5 м в диапазонах $0 - 30$; $0 - 60$ км;	
	dl = 10 м в диапазоне 0 - 120 км;	
	dl = 18 м в диапазоне 0 - 240 км;	
	L – измеряемая длина, м;	
	n – показатель преломления оптического	
	волокна, ед. показателя преломления;	
	Dn - погрешность измерений показателя	
	преломления оптического волокна, ед.	
	показателя преломления.	
Мертвая зона при уровне отражения	-	
минус 45 дБ, м, не более		
- при измерении ослабления	3,5	
- при измерении положения неоднородности	0,9	
Длительность зондирующих импульсов, нс		
- на длинах волн 1310 и 1550 нм	5, 10, 30, 100, 300, 1000, 3000, 10000, 20000	
- на длинах волн 850 и 1300 нм	5, 10, 30, 100, 300, 1000	
Измеритель оптической мощности		
Длины волн калибровки, нм	850, 1300, 1310, 1490, 1550, 1625, 1650	
Диапазон измерений уровня средней		
мощности оптического излучения, дБм ²		
- в диапазоне длин волн от 1300 до 1650 нм	От минус 65 до плюс 3	
- на длине волны 850 нм	От минус 60 до плюс 3	
Пределы допускаемой относительной	·	
погрешности измерений уровня средней		
мощности оптического излучения на длинах	$\pm 0,\!25$	
волн калибровки при уровне мощности		
минус 10 дБм, дБ		
Пределы допускаемой относительной		
погрешности измерений относительных	. 0.7	
уровней мощности, дБ	$\pm 0,7$	

1 Динамический диапазон - разность в децибелах между уровнем сигнала, рассеянного от ближнего к прибору конца измеряемого оптического кабеля, и уровнем шумов при длительности импульса 20 мкс (в одномодовом режиме) и уровнем шумов при длительности импульса 1 мкс (в многомодовом режиме). ² Здесь и далее (дБм) обозначает (дБ) относительно 1 мВт.

Таблица 3

Наименование характеристики	Значение характеристики	
Электропитание осуществляется от сети переменного		
тока через блок питания (сетевой адаптер)		
напряжением, В	220 ± 22	
частотой, Гц	50 ± 0.5	
Габаритные размеры (высота × ширина × глубина),		
мм, не более	$230\times110\times70$	
Масса, кг, не более	0,9	
Условия эксплуатации:		
Температура окружающей среды, °С	От минус 18 до плюс 50	
Относительная влажность воздуха, % (при		
температуре плюс 30 °C, без конденсации влаги)	До 90	

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации АПБР.418233.010 РЭ печатным способом и в виде наклейки на заднюю панель корпуса рефлектометра методом наклеивания.

Комплектность средства измерений

Таблица 4

Наименование	Количество, шт.
Рефлектометр оптический FOD-7005-035	1
Блок питания (зарядное устройство)	1
Пылезащитный колпачок (заглушка)	
(разъем MM OTDR, разъем SM OTDR, разъем OPM)	3
Пылезащитный колпачок (заглушка)(разъем VFL)	1
Адаптер FC(SM разъем)	1
Адаптер SC (ММ разъем)	1
Универсальный 2,5 мм адаптер (разъем ОРМ)	1
Универсальный 2,5 мм адаптер (разъем VFL)	1
Защитный резиновый кожух	1
Руководство по эксплуатации АПБР.418233.010 РЭ	1
Сумка для переноски	1

Поверка

осуществляется по документам: Р 50.2.071-2009 «Государственная система обеспечения единства измерений. Рефлектометры оптические. Методика поверки» и ГОСТ Р 8.720-2010 «Государственная система обеспечения единства измерений. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи информации. Методика поверки».

Основные средства поверки:

1 Рабочий эталон единиц длины и ослабления в световоде, ГР СИ № 26439-04.

Основные метрологические характеристики:

Рабочие длины волн оптического излучения: 1310 ± 20 , 1550 ± 20 нм. Диапазон воспроизведения длины: 0.06 - 600 км. Пределы допускаемой основной абсолютной погрешности при воспроизведении длины: $D = \pm (0.1 + 5 \cdot 10^{-6} L)$, где L – воспроизводимая длина, м.

Диапазон измерений вносимого ослабления: 0 - 20 дБ.

Пределы допускаемой основной абсолютной погрешности при измерении вносимого ослабления: $\pm 0.015 \cdot A$, где A – измеряемое вносимое ослабление, дБ.

Длительность зондирующих импульсов:

- при проверке шкалы длин: 300, 1000, 3000, 10000, 30000 нс;
- при проверке шкалы ослаблений: 2000, 6000, 10000, 20000, 50000 нс.
- 2 Рабочий эталон средней мощности оптического излучения в волоконно-оптических системах передачи РЭСМ-ВС, ГР СИ № 32837-06.

Основные метрологические характеристики:

- диапазон измеряемых значений средней мощности: $(10^{-10} 10^{-2})$ Вт;
- диапазоны длин волн исследуемого излучения: (800 900; 1250 1350; 1500 1700) нм;
- пределы допускаемой основной относительной погрешности измерений средней мощности на длинах волн калибровки в диапазоне от 10^{-10} до 2×10^{-3} Вт $\pm 2,5$ %, в диапазоне

от 2×10^{-3} до 10^{-2} Вт - \pm 3,5 %, в рабочем спектральном диапазоне - \pm 5 %, измерений относительных уровней мощности в диапазоне от 10^{-10} до 2×10^{-3} Вт - \pm 1,2 %.

3 Осциллограф цифровой запоминающий WaveJet 352, ГР СИ № 32488-06.

Основные метрологические характеристики:

Диапазон измерений: $0 - 500 \text{ M}\Gamma$ ц. Погрешность измерений: $\pm 1,5 \%$.

Сведения о методиках (методах) измерений

«Рефлектометр оптический FOD-7005-035. Руководство по эксплуатации АПБР.418233.010 РЭ», раздел 6.

Нормативные документы, устанавливающие требования к рефлектометрам оптическим FOD-7005-035

ГОСТ 8.585-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконно-оптических систем связи и передачи информации».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Оказание услуг почтовой связи, учет объема оказанных услуг электросвязи операторами связи и обеспечение целостности и устойчивости функционирования сети связи общего пользования.

Изготовитель

Общество с ограниченной ответственностью «ТПК Волоконно-оптических приборов» (ООО «ТПК Волоконно-оптических приборов»)

Юридический адрес: 109004, г. Москва, Тетеринский пер., д.16

Фактический адрес: 107241, г. Москва, Щелковское ш., д.23А, офис 621

Телефон: (495) 690-9088, факс (495) 690-9085 E-mail: <u>info@fod.ru</u> WEB: <u>http://www.fod.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»).

Адрес: 119361, г. Москва, ул. Озерная, д. 46.

Телефон/факс: (499) 792-07-03,

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-14 от 23.06.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « » 2015 г.