ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительно-управляющие PlantCruise/Experion LX

Назначение средства измерений

Системы измерительно-управляющие PlantCruise/Experion LX (далее - системы)-представляют собой измерительно-вычислительные и управляющие комплексы, предназначенные для измерений аналоговых выходных сигналов датчиков в виде напряжения и силы постоянного тока, сопротивления, в том числе выходных сигналов от термопар и термопреобразователей сопротивления, а также приёма и обработки дискретных сигналов; регулирования на основе измерений параметров технологического процесса, выдачи сигналов сигнализации, формирования управляющих аналоговых и дискретных сигналов.

Описание средства измерений

Системы включают в себя следующие измерительные компоненты:

- модули ввода-вывода серии 8 (до 80 шт. модулей ввода-вывода);
- контроллер С300 серии 8;
- модули ввода-вывода RTU2020 (до 9 шт.);
- контроллер RTU2020;
- оборудование верхнего уровня системы.

Модули ввода-вывода преобразуют поступающие на вход электрические сигналы в цифровой код (модули ввода) или выполняют цифроаналоговое преобразование цифрового кода в электрические сигналы. Также некоторые модули поддерживают протокол HART.

В состав систем могут входить следующие измерительные модули ввода-вывода:

- модули серии 8, принимающие сигналы от термопар и термопреобразователей сопротивления;
- модули серии 8, принимающие аналоговые сигналы в диапазоне от 4 до 20 мА постоянного тока;
- модули дифференциальных аналоговых входов серии 8, принимающие несимметричные и дифференциальные сигналы;
- модули аналоговых выходов серии 8, формирующие выходные аналоговые в диапазоне от 4 до 20 мА постоянного тока;
- модули дискретных входов серии 8 для подсчета импульсов, принимающие дискретные сигналы напряжением 24 В постоянного тока. Первые 16 каналов из 32 могут быть настроены для подсчета импульсов и измерения частоты (каждый канал настраивается отдельно);
- модули аналогового ввода RTU2020, , принимающие аналоговые сигналы в диапазонах от 4 до 20 MA и от 1 до 5 B постоянного тока;
- модули аналогового вывода RTU2020, формирующие аналоговые сигналы в диапазоне от 4 до 20 мА постоянного тока.

Также в состав системы могут быть включены модули дискретных входов и выходов.

Контроллеры C300 и RTU2020 обеспечивают реализацию функций управления на основе настраиваемого программного обеспечения. Они принимают сигналы от модулей ввода-вывода и формируют на основе измерительной информации управляющие сигналы.

Системы применяются для автоматизированного управления технологическими процессами.

В состав верхнего уровня систем могут входить:

- модуль шлюза Profibus, обеспечивающий общую платформу, поддерживающую интерфейс с сетями PROFIBUS DP и контроллером C300;
 - операторские и инженерные рабочие станции;
 - узел имитации SIM C300;

- системы, реализующие сложные стратегии управления производством, такие как моделирование производства, управление активами, система контроля режимов электростации (POMS), системы управления производством (такие как Business Flex и OptiVISION)

Структурная схема систем PlantCruise представлена на рисунке 1, фотография общего вида системы с модулями ввода-вывода серии 8 на рисунке 2.

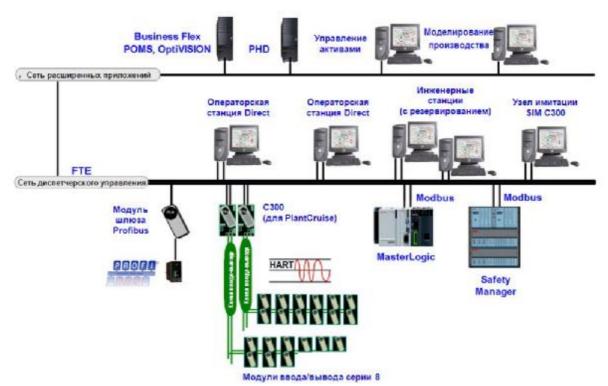


Рисунок 1 – Пример структурной схемы системы PlantCruise/Experion LX

Рисунок 2 – Фотография общего вида системы с модулями ввода-вывода серии 8

Программное обеспечение

Программное обеспечение (Π O) «PlantCruise» имеет архитектуру клиент-сервер и состоит из нескольких программных компонентов, часть которых устанавливается опционально.

В базовый состав ПО «PlantCruise»: входят следующие программные компоненты:

- «Configuration Studio». Программная среда, обеспечивающая доступ к набору средств конфигурирования. Инструменты и приложения для конфигурирования реализуют создание модели предприятия, конфигурирование компонентов оборудования, создание алгоритмов управления для контроллеров, настройки различных компонентов вывода информации и создание пользовательских мнемосхем.
- «Программное обеспечение сервера PlantCruise». Поддерживает связь с сетью управления процессом, обеспечивая в реальном времени запись в базы данных на SQL-сервере данных, принятых от приборов учета и групп телеинформации, предоставляет данные локальным или сетевым клиентским приложениям, выполняет ряд вспомогательных функций: создание резервных копий баз данных, очистку баз от устаревшей информации и другие.
- «Программное обеспечение станции PlantCruise». Обеспечивает конфигурирование в оперативном режиме базы данных реального времени, уведомляет о деятельности системы, включая сигнализацию и системные события, предоставляет детальное и обзорное отображение информации о технологическом процессе, автоматически исполняет запланированные задачи.

Ha сервере PlantCruise и рабочей станции PlantCruise установлены универсальные программные компоненты и модули (службы).

Метрологически значимые части ПО «PlantCruise»:

- PlantCruise Control Data Access Server служба получения и передачи данных с внешних контроллеров;
 - PlantCruise ER Server служба загрузки базы данных инженерного репозитория;
 - PlantCruise GCL Name Server служба имен системы клиент сервис;
 - PlantCruise Server Operator Management служба управления паролями доступа;
 - PlantCruise Server System основная служба запуска системных приложений;
 - PlantCruise System Repository служба загрузки базы данных процессов.

Идентификационные данные метрологически значимого ПО приведены в таблице 1.

Таблица 1а - Идентификационные данные программного обеспечения

Идентификационные дан- ные (признаки)	Значения			
Идентификационное на-	PlantCruise Control PlantCruise ER PlantCruise GCL			
именование ПО	Data Access Server	Server	Name Server	
Имя исполняемого файла	pscdasrv.exe	ErServer.exe	glcnameserver.exe	
Номер версии (идентификационный номер) ПО	40X.X.XX.XX	40X.X.XX.XX	40X.X.XX.XX	
Цифровой идентификатор	16f467a004b6ebb	363afca6f4f8cde8	e92065b863931799	
ПО	6000a3f9f831d4d05	c23f63c73149b018	020b23a93c354cef	

Таблица 16 - Идентификационные данные программного обеспечения

, , , ,	1 ' ' '	1 1				
Идентификацион-						
ные данные (при-	Значения					
знаки)						
Идентификацион-	PlantCruise Server	ver PlantCmias Car				
ное наименование	Operator Manage-	PlantCruise Server System	PlantCruise System Repository			
ПО	ment					
Имя исполняемого	Hsc_oprmgmt.exe	HSCSERVER_Servicehost.exe	SysRep.exe			
файла	11sc_opringint.exe	TISCSER VER_Servicenost.exe	Systep.exe			
Номер версии						
(идентификацион-	40X.X.XX.XX	40X.X.XX.XX	40X.X.XX.XX			
ный номер) ПО						
Цифровой иденти-	8a64ec8a38fa66f17b	a64ec8a38fa66f17b cd0ebe7b93f659efb 947466ca0c3ac				
фикатор ПО	27457759487aba	cf8996928ba09b5	b96c890e10c60f39			

Таблица 1в - Идентификационные данные программного обеспечения

таомица тв тидентификационные данные программиото осеене тения				
Идентификационные дан- ные (признаки)	Значения			
Идентификационное на-	PlantCruise Control Da- PlantCruise ER PlantCruise G			
именование ПО	ta Access Server	Server	Name Server	
Имя исполняемого файла	pscdasrv.exe	ErServer.exe	glcnameserver.exe	
Номер версии (идентификационный номер) ПО	43X.X.XX	43X.X.XX.XX	43X.X.XX.XX	
Цифровой идентификатор	beb0f4f193fb010c71	360e784b91356f72	380423bd2a3fc4c1	
ПО	aae3cb970d4463	5a397a7e909e887d	94288e9323a248dc	

Таблица 1г - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значения			
Идентификационное наименование ПО	PlantCruise Server Operator Manage- ment	Operator Manage- PlantCruise Server System		
Имя исполняемого файла	Hsc_oprmgmt.exe	HSCSERVER_Servicehost.exe	SysRep.exe	
Номер версии (идентификационный номер) ПО	43X.X.XX	43X.X.XX.XX	43X.X.XX.XX	
Цифровой иденти-	8a64ec8a38fa66f17b	acb737cfc46f71460	819683124295e124	
фикатор ПО	27457759487aba	364b6a3b7b1c136	b9b672a95bbb798a	

Примечания:

- 1. Номер версии ΠO определяют первые две цифры (3X, 4X), в качестве букв «XX» могут использоваться любые символы.
 - 2. Цифровой идентификатор вычисляется по алгоритму md5.

Метрологические характеристики систем измерительно-управляющих PlantCruise/Experion LX, приведённые в таблицах 2, 3, нормированы с учётом метрологически значимого ПО.

В ПО «PlantCriuse» защита от непреднамеренных и преднамеренных изменений метрологически значимой части ПО и измеренных данных осуществляется:

- автоматическим контролем целостности метрологически значимой части ПО;
- защитой записей об информации, хранимой в базе данных;
- контролем целостности данных в процессе выборки из базы данных;

- автоматической фиксацией в журнале работы факта обнаружения дефектной информации в базе данных;
- автоматическим контролем доступа к хранимой информации, согласно роли оператора, используемых стратегий доступа и имеющихся у оператора прав;
- настройкой доступа, для фиксации в журналах работы фактов (не)успешного доступа пользователей к хранимой информации.

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по P 50.2.077-2014

Метрологические и технические характеристики

Основные технические характеристики измерительных каналов системы приведены в таблицах 2, 3.

Таблица 2 – Метрологические характеристики модули ввода-вывода серии 8

Коли-		Сигналы		Пределы допускае-	Пределы допускае- мой погрешности в
Модули	чество кана-	На входе	На вы- ходе	грешности	рабочих условиях применения γ — приведённая, Δ - абсолютная
8C-PAINA1 8U-PAINA1 8C-PAIHA1 8U-PAIHA1	16 (анало- говый вход)	от 4 до 20 мА	16 бит	γ =± 0,075 % от диапазона	γ =± 0,15 % от диа- пазона
8C-PAIMA1 8U-PAIMA1	16 (анало- говый вход)	от минус 20 до 100 мВ сигналы от термопар* ти- пов: Ј (от минус 200 до 1200 °С) К (от минус 100 до 1370 °С) Е (от минус 200 до 1000 °С) Т (от минус 230 до 400 °С) В (от 100 до 1820 °С) S (от 0 до 1700 °С) R (от 0 до 1700 °С) сигналы от термопреобра- зователей со- противления Рt100 (от ми- нус 180 до 800 °С)	16 бит	$\gamma = \pm 0,05 \% \text{ от}$ диапазона $\Delta = \pm 0,7 \text{ °C}$ $\Delta = \pm 1,0 \text{ °C}$ $\Delta = \pm 1,1 \text{ °C}$	Пределы допускаемой дополнительной приведённой погрешности от изменения температуры окр.среды $\gamma =\pm 0.02$ % от диап. измер./10°C

Окончание таблицы 2

	Коли-	Сигналы		Пределы допускаемой основной по-	Пределы допускае- мой погрешности в	
Модули чество кана- лов		На входе	На вы- ходе	грешности γ – приведённая, Δ - абсолютная	рабочих условиях применения γ — приведённая, Δ - абсолютная	
	16	от 1 до 5 В				
8C-PAIH54 8U-PAIH54	(диф- ферен- циаль- ный анало- говый вход)	от 4 до 20 мА	16 бит	γ =± 0,075 % от диапазона	γ =± 0,15 % от диа- пазона	
8C-PAONA1	16					
8U-PAONA1	(анало-	16 бит	от 4 до	$\gamma = \pm 0.2$ % от диа-	$\gamma = \pm 0.3 \%$ от диа-	
8C-PAOHA1	говый		20 мА	пазона	пазона	
8U-PAOHA1	выход)					
8C-PDIPA1 (C	32 (счет	0 1 5	32 бит	$\Delta=\pm$	$\Delta=\pm~1$ имп.	
	им- пуль- сов)	от 0 до 1 кГц	32 ОИТ	в рабочих условиях применения		

Примечание *- пределы допускаемой абсолютной погрешности канала компенсации температуры холодного спая ± 0.5 °C.

Таблица 3 – Метрологические характеристики контроллеров RTU2020

	-	Сигналы		Пределы допускае-	Пределы допускае-
	Коли-			мой основной по-	мой погрешности в
Модули	чество			грешности	рабочих условиях
Модули	кана-	На входе	На выходе	γ – приведённая,	применения
	ЛОВ			Δ - абсолютная	γ – приведённая,
					Δ - абсолютная
	8 (ана-	от 1 до			
RTU2020 AI	лого-	5 B	16 бит	$\gamma = \pm 0.1 \%$ от диа-	$\gamma = \pm 0.2$ % от диапа-
K1 U2U2U A1	вый	от 4 до	10 001	пазона	зона
	вход)	20 мА			
	2 (ана-				
RTU2020 AO	лого-	12 бит	от 4 до	$\gamma = \pm 0.2 \%$ от диа-	$\gamma = \pm 0.3$ % от диапа-
K102020 AO	вый	12 0и1	20 мА	пазона	зона
	выход)				
	2 (счет				
RTU2020 PI	им-	от 0 до	32 бит	$\Delta = \pm 1$ имп. в рабочих условиях применения	
	пуль-	10 кГц			
	сов)				

Рабочие условия применения:

температура окружающего воздуха:

- модулей ввода-вывода серии 8 и контроллеров C300 от 0 до 60 °C;
- для модулей ввода-вывода и контроллеров RTU2020 от минус 40 до 75 °C.

относительная влажность от 5 до 95 % без конденсации влаги, от 10 до 90 % (без конденсации при температуре > 40 °C);

Напряжение питания, габаритные размеры и масса - в зависимости от конфигурации системы.

Знак утверждения типа

наносится типографским методом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

- 1. Системы измерительно-управляющие PlantCruise/Experion LX комплектация согласно заказу;
- 2. Руководство по эксплуатации.

Поверка

осуществляется в соответствии с документом МИ 2539-99 с изменением № 1, утвержденным ФГУП «ВНИИМС» 28.11.2011 г. "ГСИ. Измерительные каналы контроллеров, измерительновычислительных, управляющих, программно-технических комплексов. Методика поверки". Перечень основных средств поверки: калибратор — вольтметр универсальный В1-28 (Δ_U = $\pm (0,003\%\,U+0,0003\%\,U_{\rm m})$; $\Delta_{\rm I}$ = $\pm (0,006\%\,I+0,002\%\,I_{\rm m})$), мера электрического сопротивления постоянного тока многозначная Р 3026-1 (кл.т. $0,002/1,5\cdot10^{-6}$), генератор сигналов Г3-122 ($\Delta_{\rm f}$ = $\pm 5\cdot10^{-7}$ f), частотомер электронно-счётный Ч3-64.

Сведения о методиках (методах) измерений

Метод измерений приведён в руководстве по эксплуатации «Системы измерительно-управляющие PlantCruise/Experion LX. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системам измерительно-управляющим PlantCruise/Experion LX

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процес-

сов. Общие технические условия»

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем.

Основные положения»

Техническая документация фирмы-изготовителя

Изготовитель

Honeywell International Inc., CIIIA.

Адрес: 101 Коламбия Роуд, Морристаун, НДж. 07962, США

Тел. (973) 455 26 57

Welco Technology (Suzhou) Limited, Китай,

Адрес: No. 198, Xinglong Street, Suzhou Industrial Park, Suzhou, China.

Postal Code:215126

Tel: (86-512) 6283-8860, Китай

Honeywell EOOD, Болгария

Адрес: 1528 Sofia 64, Hristofor Columb blvd.

Sofia Airport Center Logistics building 1.

Тел. + 359 (0) 2 40 29 564

Заявитель

3AO «Хоневелл» ИНН 7710065870 г. Москва, ул. Киевская, д.7 тел. (495) 796-98-00

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»), Адрес: Москва, 119361, Россия, ул. Озерная, д.46,

тел.: +7 (495) 437-55-77, факс: +7 (495) 437-56-66 e-mail: office@vniims.ru, http://www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2015 г.