ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы портативные многокомпонентные моделей GasHunter, GasHunter IR

Назначение средства измерений

Газоанализаторы портативные многокомпонентные моделей GasHunter, GasHunter IR предназначены для измерений объемной доли вредных газов, метана, диоксида углерода и кислорода и довзрывоопасной концентрации горючих газов в воздухе рабочей зоны, а также сигнализации о достижении установленных пороговых значений.

Описание средства измерений

Газоанализаторы портативные многокомпонентные моделей GasHunter, GasHunter IR(далее - газоанализаторы) являются портативными автоматическими приборами непрерывного действия.

Конструктивно газоанализаторы выполнены одноблочными в пластмассовом корпусе. Принцип действия:

- по измерительным каналам горючих газов термокаталитический, основанный на изменении температуры и, вледствие этого, сопротивления каталитически активного чувствительного элемента при сгорании на нем горючих газов и паров;
- по измерительным каналам метана, диоксида углерода закиси азота оптический, основанный на селективном поглощении молекулами определяемого компонента электромагнитного излучения и заключается в измерении изменения интенсивности инфракрасного излучения после прохождения им среды с контролируемым газом;
- по измерительным каналам кислорода и вредных газов электрохимический, основанный на реакции оксида углерода с компонентами электрохимического сенсора, вырабатывающего электрический сигнал пропорциональный концентрации оксида углерода.

Газоанализаторы могут иметь от 1 до 4 измерительных каналов.

Способ отбора пробы— диффузионный или принудительный при наличии насадки для принудительной подачи газовых смесей и внешнего побудителя расхода.

Электрическое питание газоанализаторов осуществляется от встроенной никельметаллгидридной (NiMH)аккумуляторной батареи 4x1,2B номинальной емкостью 1500 мА·ч.

Газоанализатор имеет жидкокристаллический монохромный цифровой дисплей с подсветкой, обеспечивающий отображение:

- результатов измерений содержания определяемых компонентов в цифровой форме;
- максимального и минимального значений результатов измерений, а также усредненного значения за время, прошедшее после включения газоанализатора по каждому измерительному каналу;
 - даты и времени, время непрерывной работы после включения электрического питания;
 - значения температуры окружающей среды (индикаторный канал);
 - уровня заряда элемента питания (в графическом виде);
 - меню пользователя (вход в меню защищен паролем);
- информацию о срабатывании сигнализации по двум уровням для каждого измерительного канала.

Газоанализаторы обеспечивают выполнение следующих функций:

- непрерывное измерение содержания определяемых компонентов;
- сравнение результатов измерений с заданными уровнями срабатывания сигнализации;
- журнал регистрации событий и данных;
- самодиагностика газоанализатора при включении.

Газоанализаторы обеспечивают срабатывание сигнализации по двум порогам для каждого измерительного канала:

- звуковым сигналом;
- светодиодным индикатором;
- отображением на дисплее символов, обозначающих пороги срабатывания (инвертирование изображения текущих результатов измерений).

Газоанализаторы обеспечивают возможность хранения данных в памяти двух видов: память частичных параметров и память событий. Память частичных параметров предназначена для автоматической записи всех результатов измерений через настраиваемый интервал времени. Память событий предназначена для автоматической фиксации событий, таких как включение и выключение газоанализатора, срабатывание сигнализации и т.д. Объем памяти каждого вида 4320 записей, запись ведется циклически.

Связь с компьютером обеспечивается посредством ИК-порта.

Заводские установки порогов срабатывания сигнализации могут быть перенастроены пользователем в процессе эксплуатации.

Газоанализаторы выполнены во взрывозащищенном исполнении по ГОСТ Р МЭК 60079-0-2001, ГОСТ IEC 60079-1-2011, ГОСТ Р МЭК 60079-2011, ГОСТ Р МЭК 60079-31-10. Маркировка взрывозащиты газоанализаторов 1 Ex ia d IIC T4 Gb X.

Степень защиты корпуса газоанализатора по ГОСТ 14254-96 соответствуетІР54.

Внешний вид газоанализаторов представлен на рисунке 1, схема пломбирования представлена на рисунке 2.

a) GasHunter

б) GasHunter IR

Рисунок 1 - Газоанализаторы портативные многокомпонентные моделей GasHunter, GasHunter IR (внешний вид)

Рисунок 2 – Схема пломбировки корпуса газоанализатора для ограничения несанкционированного доступа

Программное обеспечение

Газоанализаторы имеют встроенное программное обеспечение, разработанное изготовителем специально для решения задач измерения содержания определяемых компонентов в воздухе рабочей зоны.

Встроенное ПО выполняет следующие основные функции:

- прием и обработку измерительной информации от первичных измерительных преобразователей;
 - диагностику аппаратной и программной частей газоанализатора;
 - хранение результатов измерений;
 - проведение градуировки газоанализатора;
 - передачу данных по ИК каналу связи;
 - ведение и хранение журнала событий.

Встроенное ПО реализует следующие расчетные алгоритмы:

- вычисление результатов измерений содержания определяемых компонентов по данным от первичного измерительного преобразователя;
- сравнение результатов измерений с заданными пороговыми значениями, вычисление средних значений.

Встроенное ПО идентифицируется при включении газоанализатора путем вывода на дисплей номера версии.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблина 1

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	GasHunter	GasHunterIR	
Номер версии (идентификационный номер) ПО	GH.3.9	GHI.3.0	
Цифровой идентификатор ПО	f19f335b, алгоритм CRC32	7473354d, алгоритм CRC32	
Другие идентификационные данные (если имеются)	-	-	

Примечание - номер версии ПО должен быть не ниже указанного в таблице. Значения контрольных сумм, приведенные в таблице, относятся только к файлам прошивки обозначенных в таблице версий.

Влияние встроенного ПО учтено при нормировании метрологических характеристик газоанализаторов. Уровень защиты - средний по Р 50.2.077—2014.

Метрологические и технические характеристики

1) Диапазоны измерений, показаний, пределы допускаемой основной погрешности газоанализаторов и предел допускаемого времени установления показаний приведены в таблице 2.

Таблица 2

Определяемый	Диапазон	Диапазон	Пределы д	допускаемой	Номи-	Предел		
компонент	показаний	измерений	основной погрешно-		нальное	допус-		
	объемной	объемной	сти		сти		значение	каемого
	доли / дов-	доли / дов-	абсо-	относи-	единицы	времени		
	зрывоопас-	зрывоопас-	лютной	тельной, %	наимень-	установ-		
	ной концен-	ной концен-			шего раз-	ления по-		
	трации оп-	трации оп-			ряда ин-	казаний		
	ределяемого	ределяемого			дикатора,	систем		
	компонента	компонента			объемная	Т _{0,9Д} , с		
					доля			
Горючие газы ¹⁾	от 0 до 100	от 0 до 50	±5	-	1 %	30 (по ме-		
(термохимиче-	% НКПР ²⁾	% НКПР	% НКПР		НКПР	тану)		
ский сенсор)								
Горючие газы ¹⁾	от 0 до 100	от 0 до 50	±5	-	1 %	30 (по ме-		
(инфракрасный	% НКПР ²⁾	% НКПР	% НКПР		НКПР	тану)		
сенсор, только		Св. 50 до 100	-	± 10				
GasHunterIR)		% НКПР						

Определяемый компонент	Диапазон показаний объемной доли / довзрывоопасной концентрации определяемого компонента	Диапазон измерений объемной доли / довзрывоопасной концентрации определяемого компонента	основной	допускаемой и погрешно- сти относи- тельной, %	Номи- нальное значение единицы наимень- шего раз- ряда ин- дикатора, объемная доля	Предел допус- каемого времени установ- ления по- казаний систем $T_{0,9Д}$, с
Метан (инфракрасный сенсор, только для GasHunterIR)	От 0 до 100 % НКПР	От 0 до 50 % НКПР Св. 50 до 100 % НКПР	± 5 % НКПР -	- ± 10	1 % НКПР	30
	От 0 до 100 %	От 0 до 60 % Св. 60 до 100 %	± 3 %	- ± 5	1 %	30
Диоксид углерода (CO ₂)(инфракр асный сенсор,	От 0 до 5000 млн ⁻¹	От 0 до 1000 млн ⁻¹ Св. 1000 до 5000 млн ⁻¹	± 150 млн ⁻¹	± 15	50 млн ⁻¹	30
только для GasHunterIR)	От 0 до 5 %	От 0 до 1 % Св. 1 до 5 %	± 0,1 %	- ± 10 %	0,1 %	30
	От 0 до 100 %	От 0 до 20 % Св. 20 до 100 %	± 2 % -	± 10 %	1,0 %	30
Закись азота (N_2O) (инфракрасный сенсор, только для $GasHunterIR$)	От 0 до 5000 млн ⁻¹	От 0 до 1000 млн ⁻¹ Св. 1000 до 5000 млн ⁻¹	± 150 млн ⁻¹	± 15	50 млн ⁻¹	30
Кислород (О2)	от 0 до 25 %	от 0 до 5 % св. 5 до 25 %	± 0,5 %	- ± 10	0,1 %	20
Оксид углерода (CO)	От 0 до 500 млн ⁻¹	от 0 до 20 млн ⁻¹ св. 20 до 500 млн ⁻¹	±3 млн ⁻¹	± 15	1 млн ⁻¹	30
Сероводород (H ₂ S)	от 0 до 100 млн ⁻¹	от 0 до 10 млн ⁻¹ св. 10до 100 млн ⁻¹	±1,5млн ⁻¹	±15	0,1 млн ⁻¹	35
Диоксид серы (SO ₂)	от 0 до20 млн ⁻¹	от 0 до 6 млн ⁻ св.6 до 20 млн ⁻¹	± 0,9 млн ⁻¹	±15	0,1 млн ⁻¹	40
Синильная ки- слота (HCN)	От 0 до 50 млн ⁻¹ *		± 10млн ⁻	-	0,5 млн ⁻¹	205
Водород (Н2)	От 0 до 1000 млн ⁻¹	От 0 до 1000 млн ⁻¹	± 100 млн ⁻¹	-	2млн ⁻¹	95
Водород (Н2)	От 0 до 4 %	От 0 до 2 %	± 0,2 %	-	0,01 %	60

Определяемый компонент	Диапазон показаний объемной доли / довзрывоопасной концентрации определяемого компонента	Диапазон измерений объемной доли / довзрывоопасной концентрации определяемого компонента	основной абсо- лютной	допускаемой и погрешно- сти относи- тельной, %	Номи- нальное значение единицы наимень- шего раз- ряда ин- дикатора, объемная доля	Предел допус- каемого времени установ- ления по- казаний систем $T_{0,9Д}$, с
Фосфин (РН ₃)	От 0 до 5 млн ⁻¹ *	От 0 до 5 млн ⁻¹	±1 млн ⁻¹	-	0,05млн ⁻¹	85
Аммиак (NH ₃)	От 0 до 100 млн ⁻¹	От 0 до 30 млн ⁻¹ Св. 30 до 100 млн ⁻¹	± 5 млн ⁻¹	- ± 15	1 млн ⁻¹	60
Оксид азота (NO)	От 0 до 250 млн ⁻¹	От 0 до 5 млн ⁻¹ Св. 5 до 250 млн ⁻¹	± 1 млн ⁻¹ -	- ± 20	0,5 млн ⁻¹	25
Этиленоксид (C ₂ H ₄ O)	От 0 до 20 млн ⁻¹ *	От 0 до 20 млн ⁻¹	± 2 млн ⁻¹	-	0,1 млн ⁻¹	125
Хлор (Cl ₂)	От 0 до 10 млн ⁻¹ *	От 0 до 1,0 млн ⁻¹ Св. 1,0 до 10 млн ⁻¹	±0,2 млн ⁻¹	± 20	0,1 млн ⁻¹	65
Диоксид азота (NO ₂)	от 0 до 20 млн ⁻¹	от 0 до 1,5 млн ⁻¹ св. 1,5 до20 млн ⁻¹	± 0,2 млн ⁻¹	± 15	0,1 млн ⁻¹	30
Хлористый водород (HCl)	От 0 до 30 млн ⁻¹ *	От 0 до 5 млн ⁻¹ Св. 5 до 30 млн ⁻¹	± 1,0 млн ⁻¹	- ± 20	1,0млн ⁻¹	75
Озон (О ₃)	От 0 до 1 млн ⁻¹ *	От 0 до 0,2 млн ⁻¹ Св. 0,2 до 1,0 млн ⁻¹	млн ⁻¹ -	- ± 20	0,02 млн ⁻¹	65
Фтористый во- дород (HF)	От 0 до 10 млн ⁻¹ *	От 0 до 10 млн ⁻¹	± 1,5 млн ⁻¹	-	0,1 млн ⁻¹	125

Диапазоны измерений, отмеченные "*", используются для измерения объемной доли определяемого компонента при аварийной ситуации

Примечания:

1) — поверочным компонентом является один из следующих определяемых компонентов: метан (CH_4), этан(C_2H_6), пропан (C_3H_8), бутан (C_4H_{10}), пентан (C_5H_{12}), гексан (C_6H_{14}), водород (H_2) (только для термохимических сенсоров), ацетилен (C_2H_2) (только для термохимических сенсоров), этилен (C_2H_4), пропилен (C_3H_6), бензол (C_6H_6), оксид этилена (C_2H_4O),

^{2) -} значения НКПР для определяемых компонентов по ГОСТ 30852.19-2002.

- 2) Предел допускаемой вариации показаний газоанализатора равен 0,5 в долях от предела допускаемой основной погрешности.
- 3) Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей среды в пределах рабочий условий эксплуатации на каждые $10\,^{\rm o}$ C, в долях от предела допускаемой основной погрешности 0,5
- 4) Пределы допускаемой дополнительной погрешности от влияния изменения влажности окружающей и анализируемой сред в рабочих условиях эксплуатации на каждые 10 % от влажности при определении основной погрешности, в долях от предела допускаемой основной погрешности

 0,5
 - 5) Время прогрева газоанализатора, с, не более

30

- 6) Предел допускаемого изменения показаний газоанализаторов за 8 ч непрерывной работы, в долях от предела допускаемой основной погрешности, не более 0,5
- 7) Время непрерывной работы газоанализатора от одной полной зарядки аккумуляторной батареи (при температуре 20 °C), ч, не менее
 - 8) Габаритные размеры и масса газоанализатора не более указанных в таблице 3.

Таблица 3

Модель газоанализатора	Габаритные ј	Масса, г,	не		
	высота	ширина	длина	более	
GasHunter	151	80	34	400	
GasHunter IR	151	80	34	400	

9) Средняя наработка на отказ, ч

10 000

- 10) Средний срок службы сенсора, лет:
- термохимические, электрохимические

от 1,5 до 3

- инфракрасные

от 1,5 до 5

Рабочие условия эксплуатации

- диапазон температур окружающей среды, °C

от минус 20 до 40

- диапазон относительной влажности воздуха, %

от 10 до 90(без конденсации)

- диапазон атмосферного давления, кПа

от 80 до 120

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на заднюю панель газоанализатора в виде наклейки.

Комплектность средства измерений

Комплект поставки газоанализатора указан в таблице 4.

Таблица 4

Наименование	Обозначение	Количество, шт.
Газоанализатор (модель и количество измеритель-	GasHunter	1
ных каналов по заказу)	или	
	GasHunterIR	
Зарядное сетевое устройство	LDR-10	1
Автомобильное зарядное устройство	LDR-10S	*
Насадка для принудительной подачи газовой смеси	-	*
Ручной насос для насадки	_	*
Приставка для связи с персональным компьютером	RS-IR	*
Преобразователь USB для подключения приставки	USB RS 232	
RS-IR		
Руководство по эксплуатации	-	1

Наименование	Обозначение	Количество, шт.		
Паспорт	-	1		
Методика поверки	МП-242-1902-2015	1		
Примечание - позиции, отмеченные знаком "*" поставляются по отдельному заказу				

Поверка

осуществляется по документу МП-242-1902-2015 "Газоанализаторы портативные многокомпонентные моделей GasHunter, GasHunterIR. Методика поверки", разработанному и утвержденному ГЦИ СИ ФГУП «ВНИИМ им Д.И. Менделеева» "08" апреля 2015 г.

Основные средства поверки:

- поверочный нулевой газ (ПНГ) воздух марки A, Б по ТУ 6-21-5-82 в баллонах под давлением;
 - азот газообразный особой чистоты сорт 1, 2 по ГОСТ 9293-74 в баллоне под давлением;
 - стандартные образцы газовых смесей в баллонах под давлением по ТУ 6-16-2956-92;
 - источники микропотока НГ ИМ130-М-А2 по ИБЯЛ.418319.013 ТУ;
- рабочий эталон 1-го разряда генератор газовых смесей ГГС по ШДЕК.418313.900 ТУ в комплекте с ГС и источниками микропотоков и газовыми смесями в баллонах под давлением по ТУ 6-16-2956-92;
- генератор озона ГС 7601 по ТУ 25-7407.040-90, относительная погрешность приготовления газовых смесей ± 7 %.

Сведения о методиках (методах) измерений

приведены в документах:

- «Газоанализаторы портативные многокомпонентные модели GasHunter. Руководство по эксплуатации»;
- «Газоанализаторы портативные многокомпонентные модели GasHunterIR. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к газоанализаторам портативным многокомпонентным моделей GasHunter, GasHunter IR

- 1 ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.
- 2 ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны
- 3 ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- 4 ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Требования безопасности.
- 5 ГОСТ 8.578-2008 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 6 Техническая документация фирмы "ALTERS.A.", Польша.

Изготовитель

Фирма"ALTER S.A.", Польша

Адрес:ul. Pocztowa 13, 62-080 Tarnowo Podgórne, Polska Tel./fax: +48 61 814 65 57, +48 61 814 71 49, +48 61 814 62 90

E-mail: alter@altersa.pl

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», Санкт-Петербург

Адрес: 190005, Санкт-Петербург, Московский пр., 19

Тел. (812) 251-76-01, факс (812) 713-01-14 E-mail: <u>info@vniim.ru</u>, <u>http://www.vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2015 г.