ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры промышленные многофункциональные «Арбитр»

Назначение средства измерений

Контроллеры промышленные многофункциональные «Арбитр» (далее по тексту – контроллеры) предназначены для измерения и преобразования входных сигналов (силы постоянного тока, количества импульсов электрического напряжения) поступающих от соответствующих вычислителей, корректоров, расходомеров, приборов учета, счетчиков, датчиков по цифровым и аналоговым интерфейсам.

Описание средства измерений

Принцип действия контроллеров заключается в измерении и преобразовании по аналоговым и цифровым входам значений электрических сигналов с соответствующих вычислителей, корректоров, расходомеров, счетчиков и датчиков, и других приборов, поддерживающих открытые протоколы обмена по цифровым интерфейсам, контроле полученных значений, их обработке и хранении, с последующей передачей в информационные системы.

Контроллеры предназначены для работы в составе:

- автоматизированных информационно-измерительных систем коммерческого/технического учёта электроэнергии и мощности (АИИС КУЭ/АИИС ТУЭ);
 - автоматизированных систем коммерческого учёта тепловой энергии (АСКУТЭ);
 - автоматизированных систем диспетчерского контроля и телеуправления (АСДТУ);
 - автоматизированных систем управления технологическим процессом (АСУ ТП).

Контроллеры представляют собой устройства, выполненные в пластиковом корпусе. В корпусе контроллеров размещена микропроцессорная плата, предназначенная для организации работы внешних интерфейсов, а также обработки и подготовки полученных данных для хранения их во внутренней памяти контроллеров и дальнейшей передачи на верхний (диспетчерский) уровень. На микропроцессорной плате установлены разъемы для обеспечения подключения внешнего питания, разъемы для подключения интерфейсных кабелей и элементы индикации работы контроллеров. Внешний вид контроллеров представлен на рисунке 1. Места пломбирования и нанесения знака поверки расположены на боковой стороне корпуса и представлены на рисунке 2.

Рисунок 1 - Внешний вид контроллеров

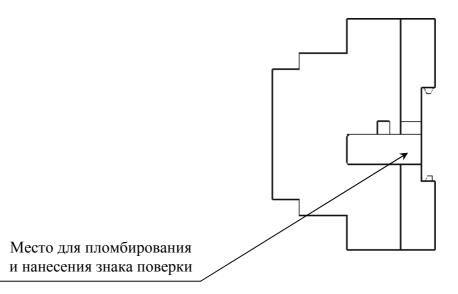


Рисунок 2 - Места пломбирования и нанесения знака поверки контроллеров

Контроллер позволяет организовывать информационный обмен с многофункциональными счетчиками электрической энергии, сторонними контроллерами и другими устройствами, поддерживающими открытые протоколы обмена:

- ΓΟCT P MЭK 61870-5-101;
- ΓΟCT P MЭK 61870-5-104;
- Modbus ASCII:
- Modbus RTU;
- Modbus TCP;
- OPC-UA;
- Telnet, Syslog, TFTP, FTP, SNMP, HTTP, SSH и другие.

Контроллеры предназначены для выполнения следующих основных функций:

- 1) прием сигналов с соответствующих счетчиков, вычислителей, корректоров, расходомеров, датчиков, приборов учета или других средств измерений (указанных в руководстве по эксплуатации);
- 2) измерение входных сигналов по аналоговым и дискретным интерфейсам контроллера;
- 3) преобразование полученных сигналов на верхний уровень измерительных систем по последовательным каналам, каналам сетей стандарта Ethernet, радиотелефонной связи стандарта GSM в режиме пакетной или голосовой передачи данных с использованием технологий GPRS/EDGE/3G или CSD, по каналам связи стандартов IEEE 802.11, Wi-Fi, LTE и другим типам радиосетей;
- 4) построение информационных систем по сбору данных, диспетчеризации удаленных объектов, управляющих систем по автоматизации технологических процессов;
 - 5) исполнение команд и алгоритмов, заданных пользователем.

Конфигурирование контроллеров производится с помощью прикладного программного обеспечения дистанционно через беспроводные сети, локально через порт Ethernet, порт RS232 или порт USB.

Защита данных контроллеров от несанкционированного доступа организована с помощью использования паролей и электронной пломбы.

Контроллеры выпускаются в нескольких модификациях, с опциональной возможностью кодирования встроенных модулей дополнительными обозначениями.

Расшифровка обозначения контроллеров:

Контроллер промышленный многофункциональный «Арбитр» <u>W X Y Z (КККК)</u>

W — опциональное буквенное обозначение предметной области применения контроллера:

- Е учет электроэнергии
- Т учет тепловой энергии
- С комплексный учет
- М системы дистанционного мониторинга

Обозначение аппаратной платформы (семейства процессоров):

- \cdot A ARM
- \cdot B MIPS
- $\cdot C x86$
- \cdot D PowerPC

Ү – Исполнение питания изделия:

- 0 постоянное стационарное питание, с возможностью временной работы от встроенного источника питания;
 - 1 автономное питание от встроенного источника

Порядковый номер изделия в линейке контроллеров (от 0 до 9)

Опциональный код для модулей расширения, поставляемых с контроллером.

Программное обеспечение

Характеристики программного обеспечения (далее по тексту - ΠO) приведены в таблице 1.

В контроллерах установлено встроенное ПО, которое состоит из операционной системы реального времени и пакета программ, с выделенной метрологической частью, обеспечивающих функционирование контроллеров. С помощью стандартного персонального компьютера с установленным WEB браузером и терминальной программой типа HyperTerminal пользователь (оператор) имеет возможность настроить контроллеры на конкретный объект, чтобы обеспечить сбор, хранение и обработку данных, поступающих по каналам внешних интерфейсов контроллеров.

Таблица 1 – Характеристики ПО контроллеров

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПО ТТМ-А
Номер версии (идентификационный номер ПО)	не ниже 1.5
Цифровой идентификатор ПО	_

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с рекомендациями Р 50.2.077-2014.

Метрологические и технические характеристики

представлены в таблице 2.

Таблица 2 - Метрологические и технические характеристики контроллеров

Таблица 2 - Метрологические и технические характеристики контролл	еров	
Характеристика	Значение	
Диапазон измерения и преобразования силы постоянного тока, мА	от 0 до 25	
Пределы допускаемой приведенной к верхней границе диапазона	±0,5	
погрешности измерения и преобразования силы постоянного тока, %		
Пределы допускаемой основной абсолютной погрешности при	±1,0	
измерении текущего времени за сутки, с		
Пределы допускаемой дополнительной абсолютной погрешности при	±0,3	
измерении текущего времени за сутки, вызванной изменением		
температуры окружающей среды на каждый 1 °C, с		
Диапазон измерения и преобразования количества импульсов	0 216	
электрического напряжения в диапазоне частот от 0 до 10 кГц, имп.	от 0 до 2 ¹⁶	
Пределы допускаемой относительной погрешности измерения и		
преобразования количества импульсов электрического напряжения,	±0,1	
%		
Пределы допускаемой относительной погрешности преобразования		
(электрической мощности, электрической энергии, тепловой энергии,	±0,1	
давления и т.д.) по цифровым входам, подключенным к приборам		
учёта, %		
Количество каналов учета, шт, не менее	500	
Количество зон учета (временных тарифных зон) в сутки, не более	12	
Габаритные размеры (ширина × высота × глубина), мм, не более	от 35×60×40	
т аоаритные размеры (ширина × высота × глуоина), мм, не облес	до 280×125×80	
Масса, кг, не более	5	
Нормальные условия:		
- температура окружающего воздуха, °C	от 15 до 25	
- относительная влажность воздуха, %	от 45 до 80	
- атмосферное давление, кПа	от 84 до 107	
Рабочие условия:		
- температура окружающего воздуха, °C	от минус 40 до плюс 70	
– относительная влажность воздуха при 25 °C, %	90	
Средний срок службы, лет, не менее	20	
Средняя наработка на отказ, ч, не менее	200000	

Знак утверждения типа

наносится на боковую панель корпуса в виде наклейки, а также на титульные листы эксплуатационной документации (формуляр и руководство по эксплуатации) типографским способом.

Комплектность средства измерений

Комплектность контроллеров представлена в таблице 3.

Таблица 3 – Комплектность контроллеров

Наименование	Кол-во	Примечание
1 Контроллер промышленный многофункциональный «Арбитр» ¹	1 шт.	С комплектом разъемов
2 Методика поверки ²	1 экз.	В бумажном или электронном виде на CD-диске
3 Руководство по эксплуатации ²	1 экз.	В бумажном или электронном виде на CD-диске
4Φ ормуляр 2	1 экз.	В бумажном или электронном виде на CD-диске

Примечания

- 1 GSM антенна и внешний блок питания в комплект поставки не входят.
- 2 При серийной поставке оформляется один документ на партию. Другие варианты комплектации оговариваются отдельно.

Поверка

осуществляется в соответствии с документом МП 63769-16 «Контроллеры промышленные многофункциональные «Арбитр». Методика поверки», утверждённым ООО «ИЦРМ» в марте $2016 \, \Gamma$.

Основные средства поверки:

- Прибор электроизмерительный эталонный многофункциональный «Энергомонитор-3.1 КМ» (Г. Р. № 52854-13).
 - Калибратор универсальный 9100 Е (Г.Р. № 25985-09).
 - Сервер синхронизации времени ССВ-1Г (Г.Р. № 58301-14).

Сведения о методиках (методах) измерений

Методики (методы) измерений приведены в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к контроллерам промышленным многофункциональным «Арбитр»

1 ГОСТ Р IEC 61107-2001 «Обмен данными при считывании показаний счетчиков, тарификации и управлении нагрузкой. Прямой локальный обмен данными».

2ГОСТ Р IEC 61142-2001 «Обмен данными при считывании показаний счетчиков, тарификации и управлении нагрузкой. Обмен данными по локальной шине».

3 ГОСТ Р МЭК 870-5-101-2006 «Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 101. Обобщающий стандарт по основным функциям телемеханики».

 4Γ ОСТ Р МЭК 870-5-104 — 2004 «Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 104. Доступ к сети для Γ ОСТ Р МЭК 870-5-101 с использованием стандартных транспортных профилей».

5 ТУ ТТ.01.28926880.2015 «Контроллеры промышленные многофункциональные «Арбитр». Технические условия».

Изготовитель

Общество с ограниченной ответственностью «Синерджи Тиам»

(ООО «Синерджи Тиам»), г. Москва

ИНН 7743876087

Юридический адрес: 125057, г. Москва, Ленинградский проспект, д. 63, офис 502

Тел./факс: +7 (499) 157-96-81

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии» (ООО «ИЦРМ»)

Юридический адрес: 142704, Московская область, Ленинский район, г. Видное, Промзона тер., корпус 526

Тел.: +7 (495) 278-02-48 E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» государственного центра испытаний средств измерений № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2016 г.