ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии ООО «Симбирская энергосбытовая компания» (Новоульяновск-2)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учёта электрической энергии ООО «Симбирская энергосбытовая компания» (Новоульяновск-2) (далее - АИИС КУЭ), предназначена для измерения активной и реактивной электрической энергии, потребленной за установленные интервалы времени, автоматизированного сбора, обработки, хранения, отображения информации, формирования отчётных документов, передачи данных в утвержденных форматах в ОАО «АТС» и другие заинтересованные организации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
 - передача в организации (внешние пользователи) результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций (внешних пользователей);
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
 - диагностика функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень -измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ) класса точности (КТ) 0,5 по ГОСТ 7746-2001, трансформаторы напряжения (ТН) измерительные класса точности (KT) 0,5 ГОСТ 1983-2001, счетчики электрической энергии многофункциональные СЭТ-4ТМ.02 класса точности (КТ) 0,5S/1,0 (модификация СЭТ-4ТМ.02.2, (ГР №20175-01), СЭТ-4ТМ.03М класса точности (КТ) 0,5Ѕ/1,0 (модификация СЭТ-4ТМ.03М.01, (ГР №36697-12) , ПСЧ-4ТМ.05М точности (КТ) 0.5S/1.0 (модификация ПСЧ-4ТМ.05М.12, (ГР №36355-07), ПСЧ-4ТМ.05МК класса точности (KT) 0.5S/1.0(модификация ПСЧ-4ТМ.05МК.04, (ГР №46634-11) по ГОСТ 31819.22-2012 при измерении активной электроэнергии и ГОСТ 31819.23-2012 при измерении реактивной электроэнергии, указанных в таблице 2 (7 точек измерения).

2-й уровень -измерительно-вычислительный комплекс (ИВК) включающий в себя сервер «ИКМ-Пирамида» (ГР №45270-10), устройство синхронизации времени УСВ-2 (ГР №41681-10), автоматизированные рабочие места персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, специализированное программное обеспечение (ПО) «Пирамида 2000».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин. Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин. Цифровой сигнал с выходов счетчиков электрической энергии по проводным линиям связи интерфейса RS-485 поступает на входы соответствующего GSM-модема, далее по основному каналу связи стандарта GSM с помощью службы передачи данных GPRS-на сервер ИВК «ИКМ-Пирамида», где производится обработка измерительной информации (перевод в именованные величины с учётом постоянной счётчика, умножение на коэффициенты трансформации), сбор, хранение результатов измерений, оформление отчётных документов, а также передача информации всем заинтересованным субъектам в рамках согласованного регламента. При отказе основного канала сервер ИВК «ИКМ-Пирамида» переключается на резервный, организованный по технологии CSD стандарта GSM.

Сформированные XML-отчеты передаются заинтересованным организациям и участникам Оптового рынка электроэнергии (мощности) по выделенному каналу доступа в сеть Интернет.

АИИС КУЭ оснащена системой обеспечения единого времени (далее-COEB). СОЕВ выполняет законченную функцию измерения времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени. Для обеспечения единства измерений используется единое календарное время.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе устройства синхронизации времени УСВ-2, принимающего сигналы точного времени от спутников глобальных систем позиционирования (GPS/ГЛОНАСС) установленного на уровне ИВК и синхронизирующим собственное время по сигналам времени, получаемым от ГЛОНАСС/GPS-приёмника. Сравнение показаний часов сервера ИВК «ИКМ-Пирамида» и УСВ-2 происходит 1 раз в час. Пределы допускаемой абсолютной погрешности синхронизации фронта выходного импульса 1 Гц по сигналам от встроенного ГЛОНАСС/GPS-приёмника к шкале координированного времени UTС ±10 мкс. Синхронизация часов сервера и УСВ-2 осуществляется независимо от наличия расхождений. Абсолютная погрешность текущего времени, измеряемого ИВК «ИКМ-Пирамида» (системное время) в сутки, не более ±3 с. Сличение показаний часов счетчиков и сервера ИВК «ИКМ-Пирамида» производится во время сеанса связи со счетчиками (1 раз в 30 минут). Корректировка часов счётчиков осуществляется при расхождении с часами сервера на величину более чем ±1 с.

Погрешность часов компонентов АИИС КУЭ не превышает ±5 с/сутки.

Журналы событий счетчика электроэнергии и сервера ИВК «ИКМ-Пирамида» отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ на уровне ИВК установлено программное обеспечение (Π O) «Пирамида 2000».

Программное обеспечение «Пирамида 2000» аттестовано ФГУП «ВНИИМС». Свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года.

Идентификационные данные (признаки) программного обеспечения «Пирамида 2000» приведены в таблице 1.

Таблица 1- Идентификационные данные (признаки) программного обеспечения «Пирамида 2000»

«тирамида2000» Идентификационные данные (признаки)	Значения
Наименование ПО	«Пирамида 2000»
1.Идентификационное наименование ПО	CalcClients.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	e55712d0b1b219065d63da949114dae4
2.Идентификационное наименование ПО	CalcLeakage.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	b1959ff70be1eb17c83f7b0f6d4a132f
3.Идентификационное наименование ПО	CalcLosses.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	d79874d10fc2b156a0fdc27e1ca480ac
4.Идентификационное наименование ПО	Metrology.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	52e28d7b608799bb3ccea41b548d2c83
5.Идентификационное наименование ПО	ParseBin.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	6f557f885b737261328cd77805bd1ba7
6.Идентификационное наименование ПО	ParseIEC.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	48e73a9283d1e66494521f63d00b0d9f
7.Идентификационное наименование ПО	ParseModbus.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	c391d64271acf4055bb2a4d3fe1f8f48
8.Идентификационное наименование ПО	ParsePiramida.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	ecf532935ca1a3fd3215049af1fd979f
9.Идентификационное наименование ПО	SynchroNSI.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	530d9b0126f7cdc23ecd814c4eb7ca09
10.Идентификационное наименование ПО	VerifyTime.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО	1ea5429b261fb0e2884f5b356a1d1e75
Алгоритм вычисления цифрового идентификатора ПО	MD5
V.	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений по P.50.2.077-2014 -высокий.

Конструкция АИИС КУЭ исключает возможность несанкционированного влияния на ПО АИИС КУЭ и измерительную информацию (наличие специальных средств защитыразграничение прав доступа, использование ключевого носителя, пароли, фиксация изменений в журнале событий), исключающие возможность несанкционированной модификации, загрузки фальсифицированного ПО и данных, считывания из памяти, удаления или иных преднамеренных изменений метрологически значимой части ПО и измеренных данных.

Метрологические и технические характеристики

Перечень компонентов АИИС КУЭ с указанием непосредственно измеряемой величины, наименования присоединений, типов и классов точности средств измерений, входящих в состав измерительного канала (далее-ИК), представлен в таблице 2.

Таблица 2- Перечень компонентов АИИС КУЭ

Таблица 2- Перечень компонентов АИИС КУЭ Состав измерительного канала хамерительного канала									
Номер измерительного канала	Наименования присоединений	TT	ав измеритель ТН	Счетчик	ИВК	yCB	Вид электроэнергии	Пределы допускаемой основной относительной погрешности, $\pm(\%)$	Пределы допускаемой относительной погрешности в рабочих условиях, ±(%)
1	2	3	4	5	6	7	8	9	10
1.1	РП-6 кВ насосной, РУ-6 кВ, 1 сш-6 кВ, яч. 9	ТПЛМ-10 КТ 0,5, 200/5 Зав. №18324 Зав. №18323	НТМИ-6 КТ 0,5 6000/100 Зав. №289	CЭT- 4TM.03M.01 KT 0,5S/1,0 3aв. №0807140234				1,3 2,1	5,6 3,4
1.2	РП-6 кВ насосной, РУ-6 кВ, 2 сш-6 кВ, яч. 4	ТПЛМ-10 КТ 0,5, 200/5 Зав. №66208 Зав. №16333	НТМИ-6 КТ 0,5 6000/100 Зав. №289	ПСЧ- 4ТМ.05М.12 КТ 0,5S/1,0 Зав. №0623122869	502			1,3 2,1	5,6 3,4
1.3	ТП-41(п), РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	TIII-20 KT 0,5, 1000/5 3ab. №932139 3ab. № б/н 3ab. №51381	-	CЭT- 4TM.02.2 KT 0,5S/1,0 3aB. №12031048	ИКМ-Пирамида» зав. №502	3ab.Ne3027	A P	1,1 1,8	5,4 3,3
1.4	ТП-41(п), РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-2	TIII-20 KT 0,5, 1000/5 3ab. №35161 3ab. №26742 3ab. №26568	-	CЭT- 4TM.02.2 KT 0,5S/1,0 3aB. №03050260	ИВК «ИКМ-П _и	YCB-2		1,1 1,8	5,4 3,3
1.5	ТП- 1767(п), РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	T-0,66 KT 0,5, 400/5 3ab.№07080606 3ab.№07080605 3ab.№07080607	-	ПСЧ- 4ТМ.05МК.04 КТ 0,5S/1,0 Зав. №1101160672	7			1,1 1,8	5,4 3,3
1.6	ТП- 1767(п), РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-2	T-0,66 KT 0,5, 400/5 3ab.№02022651 3ab.№02022652 3ab.№02022653	-	ПСЧ- 4ТМ.05МК.04 КТ 0,5S/1,0 Зав. №1101160463				1,1 1,8	5,4 3,3

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
1.7	ЦРП-1, РУ-0,4 кВ, сш-0,4 кВ, КЛ-0,4 кВ ООО "Исток"	TTИ-А КТ 0,5, 400/5 Зав. №Y4152 Зав. №Y4465 Зав. №Y4467	-	СЭТ- 4ТМ.02.2 КТ 0,5S/1,0 Зав. №07050311	ИВК «ИКМ-Пирамида» зав. №502	YCB-2 3aB.№3027		1,1 1,8	5,4 3,3

Примечания

- 1. А-активная электрическая энергия, Р-реактивная электрическая энергия;
- В качестве характеристик относительной погрешности ИК установлены пределы допускаемой относительной погрешности ИК при доверительной вероятности равной 0,95, для нормальных условий эксплуатации при I=0,1 Іном, $\cos\phi=0,8$ инд.; для рабочих условий эксплуатации при I=0,05 Іном, $\cos\phi=0,5$ инд при температуре окружающего воздуха в месте расположения счетчиков электрической энергии от 15 до 35 °C.
- 2. Нормальные условия:
- параметры сети: напряжение (0,98-1,02) U_{HOM} , ток (1-,2) I_{HOM} , соѕj=0,9 инд.; температура окружающей среды (20 ± 5) °C.
- 3. Рабочие условия:

параметры сети: напряжение $(0.9-1.1)~U_{HOM}$, ток $(0.05-1.2)~I_{HOM}$, соѕј от 0.5~инд до 0.8~емк; допускаемая температура окружающей среды для измерительных трансформаторов тока и напряжения от минус 40~до плюс 60~°C, для счетчиков от минус 40~до плюс 60~°C; для сервера «ИКМ Пирамида» от 10~до 25~°C.

4. Технические параметры и метрологические характеристики трансформаторов тока отвечают требованиям ГОСТ 7746-2001, трансформаторов напряжения ГОСТ 1983-2001, счетчиков электрической энергии ГОСТ 31819.22-2012 в режиме измерения активной электроэнергии и ГОСТ 31819.23-2012 в режиме измерения реактивной электроэнергии.

Пределы допускаемой относительной погрешности измерительного канала при измерении активной (реактивной) электрической энергии в рабочих условиях эксплуатации (при значении рабочего тока в процентах от номинального первичного тока трансформатора тока) приведены в таблице 3.

Таблица 3 - Пределы допускаемой относительной погрешности измерительного канала АИИС КУЭ при измерении активной (реактивной) электрической энергии в рабочих условиях эксплуатации

измерительного канала	Значение соѕф	Пределы допускаемой относительной погрешности измерительного канала при измерении активной (реактивной) электрической энергии (при значении рабочего тока в процентах от номинального первичного тока трансформатора тока), \pm (%)									
змерил		2≤ 1	Ipaб <5	5≤ l	раб <20	20≤ I	раб <100	100≤ Ipaб <120			
Номер из к	Знач	A	Р	A	P	A	P	A	P		
	0,5	-	-	5,6	3,4	3,1	2,6	2,4	2,5		
1.1-1.2	0,8	-	-	3,0	5,0	1,8	3,3	1,5	2,9		
	1	-	-	1,9	Не норм.	1,3	Не норм.	1,6	Не норм.		

Продолжение таблицы 3

1	2	3	4	5	6	7	8	9	10
1.3-1.7	0,5	-	-	5,4	3,3	2,8	2,5	2,0	2,4
	0,8	-	-	2,9	4,9	1,6	3,2	1,2	2,8
	1	-	-	1,8	Не норм	1,1	Не норм	0,9	Не норм

Надежность применяемых в системе компонентов:

счетчик электрической энергии многофункциональный СЭТ-4ТМ.03М.01

- среднее время наработки на отказ не менее 140 000 часов;
- среднее время восстановления работоспособности tв = 2 часа; счетчик электрической энергии многофункциональный СЭТ-4ТМ.02.2
 - среднее время наработки на отказ не менее 90 000 часов;
- среднее время восстановления работоспособности tв = 2 часа; счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК.04
 - среднее время наработки на отказ не менее 165 000 часов;
- среднее время восстановления работоспособности t = 2 часа; счетчик электрической энергии многофункциональный ПСЧ-4TM.05M
 - среднее время наработки на отказ не менее 140 000 часов;
- среднее время восстановления работоспособности tв = 2 часа; трансформаторы тока и трансформаторы напряжения
 - среднее время наработки на отказ не менее 400 000 часов,
- среднее время восстановления работоспособности не более 168 часов; устройство синхронизации времени УСВ-2
 - -среднее время наработки на отказ не менее 35 000 часов;
- среднее время восстановления работоспособности t = 2 часа; сервер ИВК «ИКМ-Пирамида»
 - среднее время наработки на отказ не менее Т = 70000 часов,
 - среднее время восстановления работоспособности tв = 2 часа.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера ИВК «ИКМ-Пирамида» с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии (мощности) с помощью электронной почты и сотовой связи.

Регистрация событий:

журнал событий счетчика:

- параметрирования;
- воздействия внешнего магнитного поля;
- вскрытие счетчика;
- пропадания напряжения;
- коррекции времени в счетчике;

журнал сервера ИВК «ИКМ-Пирамида»:

- даты начала регистрации измерений;
- перерывов электропитания;
- потери и восстановления связи со счётчиками;
- программных и аппаратных перезапусков;
- корректировки времени в счетчике и сервере;
- изменения ПО.

Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- электросчетчика;
- промежуточных клеммников вторичных цепей напряжения;
- сервера ИВК «ИКМ-Пирамида»;

защита информации на программном уровне:

- результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер.

Глубина хранения информации:

- электросчетчик СЭТ-4ТМ.03М.01, СЭТ-4ТМ.02.2, ПСЧ-4ТМ.05М, ПСЧ-4ТМ.05МК каждый массив профиля при времени интегрирования 30 мин составляет 113 суток ;
- сервер ИВК «ИКМ-Пирамида» хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации АИИС КУЭ.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на измерительные каналы, на комплектующие средства измерений и приведена в таблице 4.

Таблица 4- Комплектность АИИС КУЭ

Таолица 4- Комплектность Атите Ку		
Наименование компонента системы	Номер в гос.реестре средств измерений	Количество (шт.)
1	2	3
Счетчик электрической энергии многофункциональный СЭТ 4TM.03M (модификация СЭТ 4TM.03M.01), КТ 0,5S/1,0	36697-12	1
Счетчик электрической энергии многофункциональный СЭТ 4TM.02 (модификация СЭТ 4TM.02.2), КТ 0,5S/1,0	20175-01	3
Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК (модификация ПСЧ-4ТМ.05МК.04), КТ 0,5S/1,0	46634-11	2
Счетчик электрической энергии многофункциональный ПСЧ- 4TM.05M (модификация ПСЧ-4TM.05M.12), КТ 0,5S/1,0	36355-07	1
Трансформатор тока ТТИ, (модификация ТТИ-А), КТ 0,5	28139-07	3
Трансформатор тока ТПЛМ-10, КТ 0,5	2363-68	4
Трансформатор тока ТШ (модификация ТШ-20), КТ 0,5	1407-60	6
Трансформатор тока Т-0,66, КТ 0,5	24541-03	6
Трансформатор напряжения НТМИ-6, КТ 0,5	831-53	1
Устройство синхронизации времени УСВ-2	41681-10	1
Комплекс информационно-вычислительный ИКМ-Пирамида	45270-10	1

Продолжение таблицы 4

1	2	3
Наименование документации		
Методика поверки МП 4222-04-7325106267-2016		1
Программа испытаний ПИ 4222-04-7325106267-2016		1
Формуляр ФО 4222-04-7325106267-2016		1

Поверка

осуществляется в соответствии с документом МП 4222-04-7325106267-2016 «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии ООО «Симбирская энергосбытовая компания» (Новоульяновск-2). Методика поверки», утвержденным ФБУ «Самарский ЦСМ» 08.04.2016 г.

Знак поверки наносится на свидетельство о поверке в виде оттиска и (или) наклейки со штрих кодом и заверяется подписью поверителя.

Основные средства поверки - по НД на измерительные компоненты:

- трансформаторы тока по ГОСТ 8.217-2003.
- трансформаторы напряжения по ГОСТ 8.216-2011.
- счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М в соответствии с методикой поверки «Счётчики электрической энергии многофункциональные СЭТ-4ТМ.03М. Руководство по эксплуатации. Часть 2. Методика поверки ИЛГШ.411152.145 РЭ1», утвержденной руководителем ГЦИ СИ ФБУ «Нижнегородский ЦСМ» 04 мая 2011 г.
- счетчики активной и реактивной энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02 в соответствии с методикой поверки «Счётчики активной и реактивной энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. Методика поверки ИЛГШ.411152.087 РЭ1», утвержденной руководителем ГЦИ СИ ФБУ «Нижнегородский ЦСМ» в 2001 г.
- счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05МК в соответствии с методикой поверки «Счётчики электрической энергии многофункциональные ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки ИЛГШ.411152.167 РЭ1», утвержденной руководителем ГЦИ СИ ФБУ «Нижнегородский ЦСМ» 21 марта 2011 г.
- счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05М в соответствии с методикой поверки «Счётчики электрической энергии многофункциональные ПСЧ-4ТМ.05М. Руководство по эксплуатации. Часть 2. Методика поверки ИЛГШ.411152.146 РЭ1», утвержденной руководителем ГЦИ СИ ФБУ «Нижнегородский ЦСМ» 20 ноября 2007 г.
- ИВК «ИКМ-Пирамида» в соответствии с документом «Комплексы информационновычислительные «ИКМ-Пирамида. Методика поверки ВЛСТ.230.00.000, утвержденным ФГУП «ВНИИМС» в 2010 г.
- устройство синхронизации времени УСВ-2 в соответствии с документом «Устройства синхронизации времени УСВ-2. Методика поверки ВЛСТ.237.00.001 И1», утвержденным ФГУП «ВНИИФТРИ» 12 мая 2010 г.
- радиочасы МИР РЧ-01, ГР № 27008-04.
- мультиметр «Ресурс-ПЭ-5», ГР № 33750-12.

Сведения о методиках (методах) измерений

Методы измерений, которые используются в автоматизированной информационноизмерительной системе коммерческого учёта электрической энергии (АИИС КУЭ) ООО «Симбирская энергосбытовая компания» (Новоульяновск-2) приведены в документе «Методика (метод) измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учёта электрической энергии ООО «Симбирская энергосбытовая компания» (Новоульяновск-2). МВИ 4222-04-7325106267-2016. Методика аттестована ФБУ «Самарский ЦСМ» в соответствии с ГОСТ Р 8.563-2009. Свидетельство об аттестации №127/RA.RU 311290/2015/2016 от 04 апреля 2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учёта электрической энергии ООО «Симбирская энергосбытовая компания» (Новоульяновск-2)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия.

ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия.

ГОСТ 31819.22-2012. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики реактивной энергии классов точности $0.2~\mathrm{S}$ и $0.5~\mathrm{S}$.

ГОСТ 31819.23-2012. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии. (IEC 62053-23:2003, MOD).

Изготовитель

Общество с ограниченной ответственностью «Симбирская энергосбытовая компания» (ООО «СЭСК»)

Юридический адрес: 432071, Российская Федерация, Ульяновская область, г. Ульяновск, 2-й переулок Мира, д. 24

Тел.: (8422) 30-34-64 ИНН 7325106267

Испытательный центр

Федеральное бюджетное учреждение «Самарский центр стандартизации, метрологии и испытаний в Самарской области» (ФБУ «Самарский ЦСМ»)

Адрес: 443013, пр. Карла Маркса, 134, г. Самара

Тел.: 8(846) 3360827

E-mail: smrcsm@saminfo.ru

Аттестат аккредитации ФБУ «Самарский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU 311281 от 16.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____ » ______ 2016 г.