ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее — ТТ) по ГОСТ 7746-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ 26035-83, ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени УССВ-2 (далее УССВ-2) и программное обеспечение (далее – ПО) АльфаЦЕНТР.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УССВ-2, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). УССВ-2 обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УССВ-2 более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и времени УССВ-2 не более ± 1 с. Часы счетчиков синхронизируются от часов сервера БД с периодичностью 1 раз в 30 минут, коррекция часов

счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии отражает: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ ОАО «ЭЛАРА» второй очереди используется ПО АльфаЦЕНТР версии 15.04.2001, в состав которого входят программы, указанные в таблице 1. ПО АльфаЦЕНТР обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АльфаЦЕНТР.

Таблица 1 – Метрологические значимые модули ПО

_ гаолица т – Метрологические значимые модули по						
Идентифи-						
кационные	Значение					
признаки						
Идентифи-						
кационное	amrserver.exe	amrc.exe	amra.exe	cdbora2.dll	encryptdll dll	alphamess.dll
наимено-	annisci ver.exe	anne.exe	anna.cxc	cuboraz.un	cheryptani.an	aipiiainess.uii
вание ПО						
Номер						
версии						
(иденти-	v. 4.9.4.0	v. 4.9.8.2	v. 3.22.2.0	v. 4.9.1.0	v. 2.0.0.0	v.14.05.01
фикацион-	V. 4.7.4.0	V. 7.7.0.2	V. 3.22.2.0	v. 4 .2.1.0	v. 2.0.0.0	V.1 4 .03.01
ный но-						
мер) ПО						
Цифровой	e5aa56528f5	8b3f4357982	b927d357f437	7db1e41730	0939ce05295	b8c331abb5e
идентифи-	298dccb0221	e070893895b	f275cb7b94ac	56a92e733ef	fbcbbba400ee	34444170eee
катор ПО	587ed16123	62b689a7e0	81ea624b	ccfc56bc99e	ae8d0572c	9317d635cd
Алгоритм						
вычисле-	MD5					
ния циф-						
рового						
идентифи-						
катора ПО						

Комплексы измерительно-вычислительные для учета электрической энергии «Альфа-ЦЕНТР», в состав которых входит ПО «АльфаЦЕНТР», зарегистрированы в Госреестре СИ РФ N 44595-10.

Предел допускаемой дополнительной абсолютной погрешности ИВК «АльфаЦЕНТР», получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ИВК «АльфаЦЕНТР».

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом Π O.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

				Метрологические характеристики ИК				
Наименован объекта	Наименование объекта	TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная по- греш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ТП №8/15 6/0,4 кВ, РУ-0,4 кВ, 1 с.ш., Ввод 1 «МЕРИДИАН»	ТНШЛ-0,66 Кл. т. 0,5 2000/5 Зав. № 28262; Зав. № 30082; Зав. № 27258	-	СЭТ-4ТМ.02М.11 Кл. т. 0,5S/1,0 Зав. № 0810102937	-	активная	±1,0 ±2,4	±4,0 ±6,9
2	ВРУ-0,4 кВ ОАО «ИНКОСТ», Ввод на с.ш. 0,4 кВ	Т-0,66 УЗ Кл. т. 0,5 300/5 Зав. № 095640; Зав. № 095643; Зав. № 095644	-	ПСЧ-4ТМ.05МК.11 Кл. т. 0,5S/1,0 Зав. № 1124136607	-	активная	±1,0 ±2,4	±4,0 ±6,9
3	ТП №11 6/0,4 кВ, РУ-0,4 кВ, 1 с.ш., ф.8 «СОЮЗ»	Т-0,66 УЗ Кл. т. 0,5 300/5 Зав. № 634791; Зав. № 634794; Зав. № 634797	-	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 12063354	-	активная	±1,0 ±2,4	±4,0 ±7,0

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
4	ТП №11 6/0,4 кВ, РУ-0,4 кВ, 1 с.ш., ф.44 «СОЮЗ»	Т-0,66 УЗ Кл. т. 0,5 300/5 Зав. № 054537; Зав. № 054538; Зав. № 054539	-	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 12062495	-	активная	±1,0 ±2,4	±4,0 ±7,0
5	ТП №11 6/0,4 кВ, РУ-0,4 кВ, 2 с.ш., ф.21 «СОЮЗ»	Т-0,66 УЗ Кл. т. 0,5 300/5 Зав. № 054533; Зав. № 054534; Зав. № 054535	-	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 11062672	-	активная	±1,0 ±2,4	±4,0 ±7,0
6	ТП №11 6/0,4 кВ, РУ-0,4 кВ, 2 с.ш., ф.40 «СОЮЗ»	Т-0,66 УЗ Кл. т. 0,5 300/5 Зав. № 054532; Зав. № 054536; Зав. № 054540	-	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 12062471	-	активная	±1,0 ±2,4	±4,0 ±7,0

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98 1.02) Uном; ток (1.0 1.2) Іном, частота (50 ± 0.15) Γ ц; $\cos j = 0.9$ инд.;
- температура окружающей среды: TT от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - для ТТ:
 - параметры сети: диапазон силы первичного тока (0.05 1.2) Ін₁; коэффициент мощности соsj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - для счетчиков электроэнергии:
 - параметры сети: диапазон вторичного напряжения (0.9-1.1) Uн; диапазон силы вторичного тока (0.01-1.2) Ін₂; коэффициент мощности соѕј (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100±4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии СЭТ-4ТМ.02М.11 от минус 40 до плюс 60 °C;
 - для счётчиков электроэнергии ПСЧ-4ТМ.05МК.11 от минус 40 до плюс 60 °C;
 - для счётчиков электроэнергии СЭТ-4ТМ.02.2 от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1, 2 от минус 40 до плюс 60 °C; для ИК № 3, 4, 5, 6 от минус 40 до плюс 55 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2. Замена оформляется актом в установленном на ОАО «ЭЛАРА» второй очереди порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.02М.11 среднее время наработки на отказ не менее T=140000 ч, среднее время восстановления работоспособности t=2 ч;
- электросчётчик ПСЧ-4ТМ.05МК.11 среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t=2 ч;
- электросчётчик СЭТ-4ТМ.02.2 среднее время наработки на отказ не менее T=90000 ч, среднее время восстановления работоспособности t = 2 ч;

- сервер — среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрирова-

нии:

- электросчетчика;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица	3 -	Комплектность	АИИС КУЭ
i attiinia	., -	TOWITING THOCH IS	

Наименование	Тип	Рег. №	Количество, шт.
Трансформатор тока	ТНШЛ-0,66	47957-11	3
Трансформатор тока	Т-0,66 У3	52667-13	15
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.02М.11	36697-08	1
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.11	46634-11	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.02.2	20175-01	4
Устройство сихронизации системного времени	УССВ-2	54074-13	1
Программное обеспечение	АльфаЦЕНТР	-	1
Методика поверки	-	-	1
Паспорт-Формуляр	-	-	1

Поверка

осуществляется по документу МП 64572-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди. Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в апреле 2016 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.02М.11 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;
- счетчиков ПСЧ-4ТМ.05МК.11 по документу «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;
- счетчиков СЭТ-4ТМ.02.2 по документу «Счетчики активной и реактивной электрической энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. ИЛГШ.411152.087 РЭ1», раздел «Методика поверки», согласованному с ГЦИ СИ «Нижегородский ЦСМ» в 2001 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%;
- УССВ-2 по документу МП-РТ-1906-2013 (ДЯИМ.468213.001МП) «Устройства синхронизации системного времени УССВ-2. Методика поверки», утвержденному руководителем ГЦИ СИ ФБУ «Ростест-Москва» 17 мая 2013 г.;

- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди, аттестованной Φ ГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ЭЛАРА» второй очереди

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Юридический (почтовый) адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9

Тел./факс: (4922) 44-87-06/(4922) 33-44-86

E-mail: post@orem.su

http://orem.su/

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			2.2.2
М.п.	« <u></u>	»	2016 г

С.С. Голубев