УТВЕРЖДАЮ

Директор ФБУ «Томский ЦСМ»

М.М. Чухланцева

27 » 09 2016 г.

Государственная система обеспечения единства измерений

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК»

МЕТОДИКА ПОВЕРКИ

МП 262-16

Содержание

1 Общие положения	3
2 Операции поверки	4
3 Средства поверки	5
4 Требования к квалификации поверителей	5
5 Требования безопасности	5
6 Условия поверки	6
7 Подготовка к поверке	6
% Проведение поверки	7
9 Оформление результатов поверки	12
Приложение А Метрологические характеристики измерительных каналов ИС	14
Приложение Б Образец оформления протокола поверки	46
Приложение В Образец приложения к свидетельству о поверке	47
Приложение Г Перечень ссылочных нормативных документов	48

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на систему измерительную автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК» (далее ИС) и устанавливает методы и средства её первичной и периодической поверок.
- 1.2 Поверке подлежит ИС в соответствии с перечнем измерительных каналов (ИК), приведенным в приложении А настоящей методики поверки. На основании письменного заявления собственника ИС допускается проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИС, с обязательным указанием в приложении к свидетельству о поверке информации о количестве и составе поверенных ИК.
- 1.3 Конструктивно ИС представляет собой многоуровневую распределенную систему, построенную по иерархическому принципу. Условно в структуре ИС выделены две подсистемы «МНЛЗ», «Водоподготовка» и два стенда: предварительной сушки промковшей и предварительного разогрева промковшей. Измерительные каналы ИС имеют простую структуру и состоят из следующих компонентов: измерительные (первичные (ПИП) и промежуточные (ИП) измерительные преобразователи), комплексные (контроллеры программируемые SIMATIC S7-300 и SIMATIC S7-400 (ПЛК), устройства распределенного ввода-вывода SIMATIC ET200 (УВВ)); вычислительные (автоматизированные рабочие места (АРМ) оператора, серверы, панели оператора, входящие в состав стендов), связующие и вспомогательные.
 - 1.4 Первичную поверку ИС выполняют перед вводом в эксплуатацию и после ремонта.
- 1.5 Периодическую поверку ИС выполняют в процессе эксплуатации через установленный интервал между поверками. Периодичность поверки (интервал между поверками) ИС 1 год.
- 1.6 Измерительные компоненты ИС поверяют с интервалом между поверками, установленным при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки ИС, поверяется только этот компонент и поверка ИС не проводится.
- 1.7 При замене измерительных компонентов на однотипные, прошедшие испытания в целях утверждения типа, с аналогичными техническими и метрологическими характеристиками поверке подвергают только те ИК, в которых проведена замена измерительных компонентов. В этом случае собственником ИС должен быть оформлен акт об изменениях, внесенных в состав ИК ИС, являющийся неотъемлемой частью паспорта, в которых указаны компоненты измерительных каналов.
- 1.8 При модернизации ИС путем введения новых измерительных каналов должны быть проведены их испытания в целях утверждения типа.
- 1.9 В случае замены отдельных компонентов автоматизированных рабочих мест (APM) оператора, за исключением замены жёсткого диска компьютера, проводят проверку функционирования ИС в объёме 8.4 настоящей методики поверки.
- 1.10В случае обновления программного обеспечения (ПО) ИС, модификации его функций проводится анализ изменений, внесённых в программное обеспечение. Если внесённые изменения могут повлиять на метрологически значимую часть программного обеспечения, то проводят испытания ИС в целях утверждения типа.

2 Операции поверки

2.1 При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1 – Операции поверки

	Пр	оведение опера	щии при поверке	
Номер		первичной		
пункта методики поверки	при вводе в эксплуатацию	после ремонта ИК или замены компонента	после переустановки ПО или замены APM оператора	периоди- ческой
8.1	да	да*	да*	да [*]
8.2	да	нет	да	да
8.3	да	да*	нет	да
8.4	да	да*	да	да
8.5	да	нет	да	да
8.6	да	нет	да*	да
8.7	да	да*	да	да
	пункта методики поверки 8.1 8.2 8.3 8.4 8.6	Номер пункта методики поверки при вводе в эксплуатацию 8.1 да 8.2 да 8.3 да 8.4 да 8.5 да 8.6 да	Номер пункта методики поверки при вводе в эксплуатацию после ремонта ИК или замены компонента 8.1 да да* 8.2 да нет 8.3 да да* 8.4 да да* 8.5 да нет 8.6 да нет	пункта методики поверки при вводе в эксплуатацию и ловерки при вводе в эксплуатацию и ловерки после переустановки по или замены компонента и да* 8.1 да да* да* да* 8.2 да нет да 8.3 да да* нет да 8.4 да да* да* 8.5 да нет да 8.6 да нет да

3 Средства поверки

3.1 При проведении поверки применяют основные и вспомогательные средства поверки, перечень которых приведен в таблице 2.

Таблица 2 – Средства поверки

Наименование	Основные метрологические характе	ристики					
средства поверки	диапазон измерений (воспроизведений)	погрешность					
Термогигрометр	– Диапазон измерений температуры от 0 до 60 °C;	$\Delta = \pm 0.3$ °C;					
ИВА-6А-Д	– диапазон измерений влажности от 0 до 98 %;	$\Delta = \pm 3\%;$					
į.	– диапазон измерений атмосферного давления от	$\Delta = \pm 2.5$ κΠα					
	86 до 106 кПа						
Мультиметр	– Диапазон измерений напряжения переменного	$\Delta = \pm (0.007 \cdot U_{\sim} + 5 B);$					
цифровой АРРА-	тока U _~ от 0,1 до 750 В;						
107	– диапазон измерений частоты f от 1 до 200 Гц;	$\Delta = \pm (0.0001 \cdot f + 0.1 \Gamma \mu);$					
	– диапазон измерений напряжения постоянного	$\Delta = \pm (0.0006 \cdot U_{=} + 0.1 B)$					
	тока U= от 1 до 200 В						
Калибратор	Диапазон воспроизведения сигналов силы	$\Delta = \pm (0.025\% \cdot X + 3 \text{ MKA})$					
электрических	постоянного тока от 0 до 24 мА						
сигналов СА71							
Радиочасы	Период формирования импульса PPS и последовател						
МИР РЧ-02	кода 1 с, пределы допускаемой абсолютной погрешности синхронизации						
	переднего фронта выходного импульса PPS со шкалой координированного						
	времени UTC ±1 мкс						
Harrigarra							

Примечания

- 1) В таблице приняты следующие обозначения: Δ абсолютная погрешность, единица величины; X значение воспроизводимой величины, деленное на 100 %.
- 2) При проведении поверки допускается замена указанных средств поверки аналогичными, обеспечивающими проверку метрологических характеристик ИК ИС с требуемой точностью

4 Требования к квалификации поверителей

4.1 Поверка ИС должна выполняться специалистами, имеющими группу допуска по электробезопасности не ниже второй, удостоверение на право работы на электроустановках до 1000 В, изучившими эксплуатационную документацию на ИС и освоившими работу с измерительными компонентами ИК ИС.

5 Требования безопасности

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ IEC 60950-1-2011 Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования;
 - Правила устройств электроустановок, разделы I, III, IV;
 - Правила технической эксплуатации электроустановок потребителей;
- Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М 016 2001. РД 153-34.0-03.150-00;
 - СНиП 3.05.07-85 Системы автоматизации;
- ПБ 11-493-2002 Общие правила безопасности для металлургических и коксохимических предприятий и производств;
 - эксплуатационная документация на средства измерений и компоненты ИС.

6 Условия поверки

6.1 Средствам	измерений,	используемым	при	проведении	поверки,	должны	ОЫТЬ
обеспечены следующи	ие условия:						
- диапазон тем	мпературы ок	ружающего возд	yxa, °C	C	1	от 15 до 25	5;

относительная влажность окружающего воздуха при 25 °C, %
атмосферное давление, кПа
напряжение питающей сети переменного тока, В
от 30 до 80;
от 84 до 106,7;
от 198 до 242;

- частота питающей сети, Гц

от 49 до 51.

6.2 Условия эксплуатации компонентов ИК ИС

Условия эксплуатации измерительных и связующих компонентов ИС:

- температура окружающей среды для преобразователей, установленных

в помещениях насосных ВП-10, БВО и УООВ, °C от 5 до 40;

– температура окружающей среды для преобразователей, установленных в помещениях насосно-аккумуляторных станций HAC4, HAC5, °C от 0

от 0 до 45;

– температура окружающей среды для преобразователей, установленных в помещении на отметке 7500 и разливной площадке, °C

от -40 до +45;

ещении на отметке 7500 и разливной площадке, С
 верхнее значение относительной влажности воздуха, %

100;

- атмосферное давление, кПа

от 84 до 107.

Условия эксплуатации комплексных и вычислительных компонентов подсистем «МНЛЗ» и «Водоподготовка»:

_	температура окружающей среды, °С	от 15 до 35;
_	относительная влажность воздуха при 25 °C, %	от 30 до 80;
_	атмосферное давление, кПа	от 84 до 106,7.

Условия эксплуатации комплексных и вычислительных компонентов стендов:

температура окружающей среды, °C
относительная влажность воздуха при 25 °C, %
атмосферное давление, кПа
от 30 до 40;
от 30 до 80;
от 84 до 106,7.

Параметры электрической сети питания компонентов ИК ИС:

напряжение сети переменного тока, В
 частота сети переменного тока, Гц
 напряжение постоянного тока, В
 от 187 до 242;
 от 49 до 51;
 от 8 до 45.

7 Подготовка к поверке

- 7.1 На поверку ИС представляют следующие документы:
- Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Паспорт;
- МП 262-15 «ГСИ. Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ 3СМК». Методика поверки»;
- Автоматизированная система регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Подсистема «МНЛЗ». Руководство пользователя;
- Автоматизированная система регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Подсистема «Водоподготовка». Руководство пользователя;
 - Стенд предварительной сушки промковшей. Руководство по эксплуатации;
 - Стенд предварительного разогрева промковшей. Руководство по эксплуатации;

- свидетельство о предыдущей поверке ИС (при выполнении периодической поверки);
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИС;
 - эксплуатационную документацию на ИС и её компоненты;
 - эксплуатационную документацию на средства измерений, применяемые при поверке.
- 7.2 Перед выполнением операций поверки необходимо изучить настоящий документ, эксплуатационную документацию на поверяемую ИС. Непосредственно перед выполнением поверки необходимо подготовить средства поверки к работе в соответствии с их эксплуатационной документацией.

8 Проведение поверки

- 8.1 Рассмотрение документации
- 8.1.1 Проверяют наличие следующей документации:
- Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ 3СМК». Паспорт (паспорт);
- эксплуатационной документации на ИС (руководств пользователя подсистем «МНЛЗ» и «Водоподготовка» и руководств по эксплуатации стендов);
- документы, удостоверяющие поверку средств измерений, входящих в состав измерительных каналов ИС;
 - свидетельство о предыдущей поверке ИС (при выполнении периодической поверки);
 - эксплуатационная документация на ИС и её компоненты.
- 8.1.2 Проверяют соответствие перечня измерительных каналов, приведенного в паспорте, перечню приложения А настоящей методики поверки.
- 8.1.3 Эксплуатационная документация на средства измерений, применяемые при поверке ИС, должна содержать информацию о порядке работы, их технических и метрологических характеристиках.

Результаты проверки положительные, если вся вышеперечисленная документация в наличии, перечень измерительных каналов, приведенный в паспорте, соответствует перечню приложения А настоящей методики поверки, все средства поверки имеют документально подтвержденную пригодность для использования в операциях поверки, все средства измерений ИК ИС имеют действующие свидетельства и (или) знаки поверки.

8.2 Внешний осмотр

- 8.2.1 При внешнем осмотре проверяют соответствие ИС нижеследующим требованиям:
- соответствие комплектности ИК ИС перечню, приведенному в паспорте и в таблице А.1 приложения А настоящей методики поверки;
- отсутствие механических повреждений и дефектов покрытия компонентов ИК ИС, ухудшающих внешний вид и препятствующих их применению;
- отсутствие обрывов и нарушения изоляции кабелей и жгутов, влияющих на функционирование ИС;
 - наличие и прочность крепления разъёмов и органов управления;
 - отсутствие следов коррозии, отсоединившихся или слабо закрепленных элементов схемы.
- 8.2.2 Внешним осмотром проверяют соответствие количества и месторасположения APM и панелей оператора, серверов, контроллеров программируемых данным, приведённым в паспорте и эксплуатационной документации на ИС.

Результаты проверки положительные, если выполняются вышеперечисленные требования. При оперативном устранении недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

- 8.3 Проверка условий эксплуатации компонентов ИС
- 8.3.1 Проверку условий эксплуатации средств измерений ИК ИС проводят сравнением фактических климатических условий в помещениях, где размещены компоненты ИС, а также параметров сети их питания с условиями, приведёнными в 6.2 настоящей методики поверки и эксплуатационной документации на эти компоненты.

Результаты проверки положительные, если фактические условия эксплуатации каждого компонента ИС удовлетворяют рабочим условиям применения, приведенным в 6.2 настоящей методики поверки и эксплуатационной документации.

8.4 Опробование ИС

- 8.4.1 Перед выполнением экспериментальных исследований необходимо подготовить ИС и средства измерений к работе в соответствии с указаниями эксплуатационной документации.
- 8.4.2 Перед опробованием ИС в целом необходимо выполнить проверку функционирования отдельных компонентов измерительных каналов ИС.
- 8.4.3 При проверке функционирования измерительных и комплексных компонентов ИС проверяют работоспособность индикаторов, отсутствие кодов ошибок или предупреждений об авариях.
 - 8.4.4 При опробовании связующих компонентов ИС проверяют:
 - наличие сигнализации о включении в сеть технических средств ИС;
- поступление по линиям связи информации об измеряемых параметрах технологического процесса и состоянии технических средств ИС;
 - наличие сигнализации об обрыве линий связи.
 - 8.4.5 При опробовании вычислительных компонентов ИС:
- проверяют правильность функционирования APM оператора подсистем «МНЛЗ», «Водоподготовка» и панелей оператора стендов, выполнив переключение между экранными формами программного обеспечения;
- проверяют отображение основных мнемосхем программного обеспечения, установленного на компьютерах APM оператора подсистем «МНЛЗ» и «Водоподготовка», и возможность вызова через них остальных экранных форм;
- проверяют правильность функционирования интерфейсной связи между комплексными и вычислительными компонентами ИК ИС и т.д.
- 8.4.6 Опробование измерительных каналов ИС в целом проводят средствами программного обеспечения АРМ и панелей оператора выполнением ряда тестов или операций, обеспечивающих проверку работы ПО ИС в каждом из предусмотренных режимов. При каждом выполнении теста или операции проводят сравнение полученных результатов с описанием, приведённым в эксплуатационной документации на ИС.
- С APM оператора подсистем «МНЛЗ» и «Водоподготовка» проверяют выполнение следующих основных функций:
 - отображение значений параметров технологического процесса, текущей даты и времени;
 - отображение архивных данных за семь суток, построение графиков;
- ведение журналов сообщений, отображение сигналов предупредительной и аварийной сигнализации при выходе параметров за установленные пределы;
- контроль протекания технологического процесса и диагностика состояния технологического оборудования.

С панелей оператора стендов проверяют выполнение функций отображения значений параметров технологического процесса и контроля протекания технологического процесса.

Результаты проверки положительные, если в журнале отсутствуют сообщения об авариях, по всем измерительным каналам ИС на экранных формах программного обеспечения АРМ и панелях оператора отображаются значения параметров технологического процесса в установленных единицах и диапазонах измерений.

- 8.5 Подтверждение соответствия программного обеспечения ИС
- 8.5.1 Проверка идентификационных данных ПО ИС
- 8.5.1.1 Проверку идентификационных данных программного обеспечения проводят в процессе штатного функционирования ИС. Прикладное ПО ИС включает в себя программное обеспечение ПЛК (метрологически значимая часть ПО ИС) и программное обеспечение, функционирующее на APM и панелях оператора.
- 8.5.1.2 К идентификационным данным метрологически значимой части ПО ИС относятся идентификационные наименования проектов программного обеспечения ПЛК:
 - «ССМ PLС» проект ПО ПЛК SIMATIC S7-400 подсистемы «МНЛЗ»;
- «WTP_PLC01», «WTP_PLC02», «WTP_PLC03» проекты ПО ПЛК SIMATIC S7-400 подсистемы «Водоподготовка»;
- «HC11E12PLC10», «HC11E12PLC14» проекты ПО ПЛК SIMATIC S7-300 стенда предварительной сушки промковшей;
- «HC11E12PLC45», «HC11E12PLC65» проекты ПО ПЛК SIMATIC S7-300 стенда предварительного разогрева промковшей.
- 8.5.1.3 Проверку идентификационного наименования ПО ПЛК проводят с использованием программатора, получив доступ под правами пользователя «администратор» к системе программирования SIMATIC STEP 7.

Результаты проверки положительные, если идентификационные наименования проектов метрологически значимой части ПО ИС соответствуют данным, приведённым в 8.5.1.2 настоящей методики поверки и описании типа средства измерений.

- 8.5.2 Проверка защиты ПО ИС и данных
- 8.5.2.1 Проверку защиты ПО ИС от несанкционированного доступа на аппаратном уровне проводят проверкой ограничения доступа к запоминающим устройствам ИС и наличия средств механической защиты замков на дверях шкафов, в которых установлены модули ПЛК, серверы и системные блоки компьютеров APM оператора.

Результаты проверки положительные, если защита программного обеспечения и данных обеспечивается конструкцией ИС, на дверях шкафов имеются замки.

- 8.5.2.2 Проверку защиты ПО ИС и данных от преднамеренных и непреднамеренных изменений на программном уровне проводят на APM и панелях оператора проверкой наличия и правильности:
- реализации алгоритма авторизации пользователя ПО APM и панелей оператора (отсутствие доступа к ПО ИС и данным при вводе неверного пароля);
- функционирования средств обнаружения и фиксации событий, подлежащих регистрации,
 в журналах сообщений;
- реализации разграничения полномочий пользователей, имеющих различные права доступа к программному обеспечению ИС и данным.

Результаты проверки положительные, если осуществляется авторизованный доступ к выполнению функций ПО APM и панелей оператора, в журналах сообщений фиксируются события и аварии.

- 8.6 Проверка обеспечения синхронизации времени
- 8.6.1 Проверку системы обеспечения единого времени ИС проводят с использованием радиочасов МИР РЧ-02, хранящих шкалу времени, синхронизированную с метками шкалы координированного времени государственного первичного эталона Российской Федерации UTC (SU). В соответствии с эксплуатационной документацией радиочасы МИР РЧ-02

подключают к компьютеру и выполняют настройку с использованием программы «Конфигуратор радиочасов МИР РЧ-02» (конфигуратор).

- 8.6.2 Проверку расхождения между шкалами времени внутренних часов компьютеров APM оператора и радиочасов проводят следующим образом:
 - ПО АРМ оператора переводят в режим отображения текущего времени;
- одновременно фиксируют показания «ВРЕМЯ UTC» во вкладке «Синхронизация» конфигуратора и текущее время, отображаемое на компьютере APM оператора;
- определяют разницу (без учёта количества часов) между шкалами времени часов компьютера APM оператора и временем UTC (SU).

Результаты проверки положительные, если расхождение между шкалами времени внутренних часов компьютеров APM оператора и радиочасов, привязанных к шкале координированного времени UTC (SU), не превышает 5 с.

- 8.7 Проверка метрологических характеристик измерительных каналов ИС
- 8.7.1 Метрологические характеристики (MX) ИК ИС определяют расчётноэкспериментальным способом согласно МИ 2439. Проверку метрологических характеристик измерительных и комплексных компонентов ИК ИС (первичных и промежуточных измерительных преобразователей, модулей ввода аналоговых сигналов ПЛК и УВВ) выполняют экспериментально в соответствии с утверждёнными методиками поверки на каждый тип средства измерений. Метрологические характеристики ИК рассчитывают по МХ средств измерений, входящих в состав ИК ИС, в соответствии с методикой, приведённой в 8.7.4 настоящей методики поверки. Допускается не проводить расчет основной фактической погрешности ИК ИС при условии, что подтверждены метрологические характеристики компонентов ИК ИС. Результаты проверки МХ ИК ИС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.
 - 8.7.2 Проверка метрологических характеристик компонентов ИК ИС
- 8.7.2.1 Метрологические характеристики измерительных и комплексных компонентов ИК ИС принимают равными значениям, приведённым в эксплуатационной документации (паспорт, формуляр и др.) средств измерений при наличии на них свидетельств и (или) знаков поверки.
- 8.7.2.2 Для термопреобразователей сопротивления пределы допускаемого отклонения сопротивления от номинальной статической характеристики (HCX) выбирают в соответствии с ГОСТ 6651.

Значения основной погрешности средств измерений, входящих в состав ИК ИС, заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

8.7.3 Исходные допущения при определении погрешности измерительных каналов ИС

Погрешности средств измерений ИК ИС относятся к инструментальным погрешностям. Факторы, определяющие погрешность, независимы.

Погрешности компонентов ИК ИС – не коррелированны между собой.

Законы распределения погрешностей компонентов ИК ИС – равномерные.

- 8.7.4 Методика расчёта основной погрешности ИК ИС
- 8.7.4.1 Погрешности ИК температуры нормированы в абсолютной форме. Погрешности ИК расхода и удельной электрической проводимости воды нормированы в относительной форме. Погрешности ИК давления и уровня нормированы в приведённой форме.
- 8.7.4.2 Границы основной абсолютной погрешности ИК температуры $\Delta_{\text{ИК_осн}}$, °C, определяют, исходя из состава ИК ИС, по формуле:

$$\Delta_{_{\text{ИК осн}}} = \Delta_{_{\Pi \text{И}\Pi}} + \Delta_{_{\text{И}\Pi}} + \Delta_{_{\text{K}}} + \Delta_{_{\text{ЛC}}}, \tag{1}$$

где $\Delta_{\Pi \Pi \Pi}$ — пределы основной абсолютной погрешности первичного измерительного преобразователя, единица измерений;

 $\Delta_{\text{ИП}}$ — пределы основной абсолютной погрешности промежуточного измерительного преобразователя (при наличии в составе ИК ИС), единица измерений;

 Δ_{K} – пределы основной абсолютной погрешности модуля ввода аналоговых сигналов ПЛК или УВВ, единица измерений;

 $\Delta_{\rm JC}$ – абсолютная погрешность линии связи, единица измерений.

Примечание — Погрешность линии связи определяется потерями в линиях связи. Между измерительными и комплексными компонентами линии связи построены из кабелей контрольных и (или) кабелей управления. Параметры линий связи удовлетворяют требованиям ГОСТ 18404.0 и ГОСТ 26411. Длина линий связи небольшая, входное сопротивление модулей ПЛК и УВВ велико, поэтому потери в линиях связи пренебрежимо малы. Между комплексными и вычислительными компонентами построен цифровой канал связи. Применены сетевые технологии Ethernet, Profibus DP. Передача данных по каналам связи Ethernet, Profibus DP имеет класс достоверности II и относится к S1 классу организации передачи (в соответствии с ГОСТ Р МЭК 870-5-1). Принимаем погрешность линии связи во всех ИК ИС равной нулю.

Для расчёта погрешности измерительного канала по формуле (1) погрешность компонента ИК ИС переводят в абсолютную форму Δ , единица измерений, для случая её представления в приведённой форме γ , %, по формуле:

$$\Delta = \gamma \cdot \frac{X_{\rm B} - X_{\rm H}}{100} \,, \tag{2}$$

где X_B и X_H – верхний и нижний пределы измерений компонента ИК ИС, единица измерений.

8.7.4.3 Границы основной относительной погрешности ИК расхода и удельной электрической проводимости воды $\delta_{\text{ИК_осн}}$, %, определяют, исходя из состава ИК ИС, в соответствии с РМГ 62 по формуле:

$$\delta_{\text{MK och}} = K \cdot \sqrt{\delta_{\text{HMH}}^2 + \delta_{\text{MH}}^2 + \delta_{\text{K}}^2 + \delta_{\text{ang}}^2 + \delta_{\text{HC}}^2} , \qquad (3)$$

гле K = 1,2;

 $\delta_{\Pi \Pi \Pi}$ — пределы основной относительной погрешности первичных измерительных преобразователей, %;

 $\delta_{\text{ИП}}$ — пределы основной относительной погрешности промежуточного измерительного преобразователя (при наличии в составе ИК ИС), %;

 δ_{K} – пределы основной относительной погрешности модуля ввода аналоговых сигналов ПЛК или УВВ, %;

 $\delta_{\rm алг}$ – относительная погрешность алгоритма (при наличии), %;

 $\delta_{\text{ЛС}}$ — относительная погрешность линии связи, %.

Для расчёта погрешности ИК ИС по формуле (3) погрешность компонента ИК ИС переводят в относительную форму δ , %, для случая её представления в абсолютной или приведённой формах по формуле:

$$\delta = \frac{\Delta}{X_{\text{HOM}}} \cdot 100 = \gamma \cdot \frac{X_{\text{B}} - X_{\text{H}}}{X_{\text{HOM}}}, \tag{4}$$

где Δ – пределы абсолютной погрешности компонента ИК ИС, единица измерений;

 γ — пределы приведённой погрешности компонента ИК ИС, нормированной для диапазона измерений, %;

 $X_{\rm B}$ и $X_{\rm H}$ — верхний и нижний пределы диапазона измерений компонента ИК ИС (в тех же единицах, что и $X_{\rm Hom}$);

 $X_{\text{ном}}$ — номинальное значение измеряемой величины, для которой определят границы относительной погрешности измерений, единица измерений.

Примечание — Если приведённая погрешность γ нормирована для верхнего предела диапазона измерений, то $X_{\rm H}\!\!=\!\!0.$

В соответствии с ГОСТ 8.508 относительную погрешность измерений вычисляют в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95 % от диапазона измерений, и выбирают максимальное значение (i = 1, ..., 5).

Для модулей ввода аналоговых сигналов ПЛК и УВВ, погрешность которых нормирована в приведённой форме, необходимо определить значение силы тока, соответствующее номинальному значению. Расчёт значения силы тока $I_{\text{номі}}$, мА, соответствующего номинальному значению измеряемой величины $X_{\text{номі}}$, единица измерений, проводят для диапазона входного сигнала модуля (4–20) мА по формуле:

$$I_{\text{homi}} = \frac{D_{\text{сигнала}} \cdot X_{\text{homi}}}{D_{\Pi \mu \Pi}} + 4, \qquad (5)$$

где $D_{\text{сигнала}}$ — разница между верхним и нижним пределами диапазона измерений входного сигнала модуля, мA;

 $D_{\Pi U\Pi}$ — разница между верхним и нижним пределами диапазона измерений ПИП (в тех же единицах, что и $X_{\text{номi}}$).

Примечание — Числовые значения пределов диапазонов измерений преобразователей приведены в эксплуатационной документации (паспорт, руководство). Значение сопротивления на выходе термопреобразователей сопротивления определяют по НСХ преобразования в соответствии с ГОСТ 6651, а значение напряжения постоянного тока на выходе преобразователей термоэлектрических — в соответствии с ГОСТ Р 8.585.

- 8.7.4.4 Границы основной приведённой погрешности ИК давления и уровня $\gamma_{\text{ИК_осн}}$, %, определяют следующим образом:
- а) переводят погрешность компонентов ИК ИС из приведённой формы в относительную по формуле (4) согласно ГОСТ 8.508 в точках $X_{\text{номі}}$, соответствующих 5, 25, 50, 75 и 95% от диапазона измерений;
- б) вычисляют по формуле (3) основную относительную погрешность ИК ИС для каждой i-ой точки диапазона измерений $\delta_{\rm UK\ ochi}$, %;
- в) переводят значения основной погрешности ИК ИС, соответствующие *i*-ым точкам диапазона, из относительной формы в приведённую по формуле:

$$\gamma_{\text{ИK_ochi}} = \frac{\delta_{\text{ИK_ochi}} \cdot X_{\text{ИK_homi}}}{X_{\text{B}} - X_{\text{H}}}, \tag{6}$$

где $X_{\rm ИК}$ $_{\rm номі}$ — номинальное значение ИК ИС, соответствующее i-ой точке диапазона измерений;

 $\bar{X}_{\rm B}$ и $X_{\rm H}$ – верхний и нижний пределы диапазона измерений ИК ИС (в тех же единицах, что и $X_{\rm HK\ Homi}$);

г) выбирают из пяти значений, полученных по формуле (6), максимальное и приписывают его основной фактической приведённой погрешности ИК ИС.

Рассчитанные (фактические) значения основной погрешности ИК ИС заносят в таблицу по форме таблицы А.1 приложения А настоящей методики поверки.

Результаты проверки положительные, если фактические значения основной погрешности измерительных каналов не превышают границ допускаемых погрешностей, приведённых в таблице А.1 приложения А настоящей методики поверки.

9 Оформление результатов поверки

- 9.1 Результаты поверки оформляют протоколом по форме, приведенной в приложении Б настоящей методики поверки.
- 9.2 При положительных результатах поверки ИС оформляют свидетельство о поверке. Состав и метрологические характеристики измерительных каналов ИС приводят в Приложении к свидетельству о поверке по форме, приведенной в приложении В настоящей методики поверки.

Каждая страница Приложения к свидетельству о поверке должна быть заверена подписью поверителя. Знак поверки наносят на свидетельство о поверке.

- 9.3 При положительных результатах первичной поверки (после ремонта или замены компонентов ИК ИС на однотипные поверенные), проведённой в объёме проверки в части вносимых изменений, оформляют новое свидетельство о поверке ИС при сохранении без изменений даты очередной поверки.
- 9.4 Допускается на основании письменного заявления собственника ИС проведение поверки отдельных измерительных каналов из перечня, приведённого в описании типа ИС, с обязательным указанием в Приложении к свидетельству о поверке информации о количестве и составе поверенных каналов.
- 9.5 Отрицательные результаты поверки оформляют извещением о непригодности. Измерительные каналы ИС, прошедшие поверку с отрицательным результатом, не допускаются к использованию.

Приложение А Метрологические характеристики измерительных каналов ИС (обязательное)

Таблица А.1

Номер		Диапазон измерений	Средства измерений, входя	в ИК ИС	Основная погрешность ИК ИС		
ик ис	Наименование ИК ИС	измерении ИК ИС, единица измерений	наименование, тип СИ	номер в ФИФ ОЕИ	пределы допускаемой основной погрешности	фактическая	границы допускаемой погрешности
1	2	3	4	5	6	7	8
			Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
1	Давление воды на выходе кристаллизатора. Ручей 1	от 0 до 6 бар	Модуль ввода аналоговых сигналов 6ES7 331-7KF02-0AB0 контроллера программируемого SIMATIC S7-300 (далее Модуль 6ES7 331-7KF02-0AB0)	15772-11	γ=±0,5 %		γ=±0,6 %
2	Давление воды на выходе кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 2	_	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
3	Давление воды на выходе кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		
4	Давление воды на выходе кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
5	Давление воды на выходе кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
6	Давление воды на выходе кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 6		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
7	Давление воды на выхоле кристаллизатора.	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
•	Ручей 7		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		, ,,,,,,,,
8	Давление воды на	от 0 до 6 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	Ручей 8		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		•
9	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	Ручей 1	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,002 t) C
10	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		$\Delta = \pm (1,2+ +0,002 \cdot t) ^{\circ}C$
	Ручей 2	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,0021)
11	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		$\Delta = \pm (1,2+ +0,002 \cdot t) ^{\circ}C$
	Ручей 3	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,0021) C
12	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	Ручей 4	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,002 ()
13	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	Ручей 5	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		(0,0021)
14	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	Ручей 6	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,002 ()
15	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	Δ=±(0,15+ +0,002·t) °C		$\Delta = \pm (1,2+ +0,002 \cdot t) ^{\circ}C$
	Ручей 7	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,0021)

1	2	3	4	5	6	7	8
16	Температура воды на входе кристаллизатора.	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}\text{C}$		Δ=±(1,2+ +0,002·t) °C
	Ручей 8	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		+0,0021)
17	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 1	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,0021) C
18	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 2	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0,5\%$		+0,0021)
19	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 3	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %	+0,00	+0,0021) C
20	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}\text{C}$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 4	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002-1)
21	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 5	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,0021)
22	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 6	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,0021)
23	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t)$ °C		Δ=±(1,2+ +0,002·t) °C
	кристаллизатора. Ручей 7	100 C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002.1)
24	Температура воды на выходе из	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+
	кристаллизатора. Ручей 8	100 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
25	Расход воды на выходе кристаллизатора. Ручей 1	от 318,2 до 3333,3	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
		л/мин	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
26	Расход воды на выходе кристаллизатора. Ручей 2	от 318,2 до 3333,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W Модуль 6ES7 331-7KF02-0AB0	40075-13 15772-11	δ=±0,65 % γ=±0,5 %		δ=±2,2 %
27	Расход воды на выходе кристаллизатора. Ручей 3	от 318,2 до 3333,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W Модуль 6ES7 331-7KF02-0AB0	40075-13	γ=±0,5 % δ=±0,65 % γ=±0,5 %		δ=±2,2 %
28	Расход воды на выходе кристаллизатора. Ручей 4	от 318,2 до 3333,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
29	Расход воды на выходе кристаллизатора. Ручей 5	от 318,2 до 3333,3 л/мин	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	15772-11 40075-13	γ=±0,5 % δ=±0,65 %		δ=±2,2 %
30	Расход воды на выходе кристаллизатора. Ручей 6	от 318,2 до	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	15772-11 40075-13	γ=±0,5 % δ=±0,65 %		δ=±2,2 %
31	Расход воды на выходе кристаллизатора. Ручей 7	от 318,2 до 3333,3	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	15772-11 40075-13	γ=±0,5 % δ=±0,65 %		δ=±2,2 %
	кристанизатора. 1 учен 7	л/мин	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
32	Расход воды на выходе кристаллизатора. Ручей 8	от 318,2 до 3333,3	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
		л/мин	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
33	Расход воды на входе спрей системы опорных роликов. Зона 1. Ручей 1	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1.1 учен 1		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
34	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 2		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
35	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
36	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
37	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
38	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 6	410,0 3/MI	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
39	Расход воды на входе спрей системы опорных	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. Ручей 7	, , , , , , , , , , , , , , , , , , , ,	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
40	Расход воды на входе спрей системы опорных роликов. Зона 1. Ручей 8	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 1. 1 учен в		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
41	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 1		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
42	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 2		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
43	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
44	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
45	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
46	Расход воды на входе спрей системы опорных	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	роликов. Зона 2. Ручей 6		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
47	Расход воды на входе спрей системы опорных роликов. Зона 2. Ручей 7	от 90,5 до 666,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Расход воды на входе	от 90,5 до	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером	15772-11 40075-13	γ=±0,5 % δ=±0,65 %		2 2 2 2 4
48	спрей системы опорных роликов. Зона 2. Ручей 8	666,6 л/мин	сигналов IFC 100W Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		δ=±2,2 %
49	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 1		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
50	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 2		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
51	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
52	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
53	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		

1	2	3	4	5	6	7	8
54	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 6		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
55	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 7	,	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
56	Расход воды на входе спрей системы неподвижного участка 1.	от 35,4 до 416,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 3. Ручей 8		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
57	Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 4. Ручей 1		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
58	Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 4. Ручей 2		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
59	Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 4. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
60	Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 4. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
61	Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
62	Зона 4. Ручей 5 Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W Модуль 6ES7 331-7KF02-0AB0	40075-13 15772-11	γ=±0,5 % δ=±0,65 % γ=±0,5 %		δ=±2,2 %
63	Зона 4. Ручей 6 Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
64	Зона 4. Ручей 7 Расход воды на входе спрей системы неподвижного участка 2.	от 22,7 до 166,6 л/мин	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	15772-11 40075-13	γ=±0,5 % δ=±0,65 %		δ=±2,2 %
65	Зона 4. Ручей 8 Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	15772-11 40075-13 15772-11	γ=±0,5 % δ=±0,65 % γ=±0,5 %		δ=±2,2 %
66	Зона 5. Ручей 1 Расход воды на входе спрей системы неподвижного участка 3. Зона 5. Ручей 2	от 8,9 до 83,3 л/мин	Модуль 6ES7 331-7KF02-0AB0 Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W Модуль 6ES7 331-7KF02-0AB0	40075-13	γ=±0,5 % δ=±0,65 % γ=±0,5 %		δ=±2,2 %
67	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
68	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
69	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
70	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 6		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
71	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 7		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
72	Расход воды на входе спрей системы неподвижного участка 3.	от 8,9 до 83,3 л/мин	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	Зона 5. Ручей 8		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
73	Давление воды на входе спрей системы опорных	от 0 до 10 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 1	ТОбар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
74	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
7 च	роликов. Зона 1. Ручей 2	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 -0,0 / 0
75	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 3	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
76	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 4	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
77	Давление воды на входе спрей системы опорных	от 0 до 10	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 5	бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
78	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 6	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		•
79	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 7	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		
80	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 1. Ручей 8	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		•
81	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 1	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
82	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 2	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		
83	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 3	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
84	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 4	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
85	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 5	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
86	Давление воды на входе спрей системы опорных	от 0 до 10 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 6	то бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
87	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 7	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
88	Давление воды на входе спрей системы опорных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	роликов. Зона 2. Ручей 8	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %]	
89	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
07	неподвижного участка 1. Зона 3. Ручей 1	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ-±0,0 70
90	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		ar=10.6.9/
90	неподвижного участка 1. Зона 3. Ручей 2	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
91	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
91	неподвижного участка 1. Зона 3. Ручей 3	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ-10,0 70
00	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		-+0.60/
92	неподвижного участка 1. Зона 3. Ручей 4	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
00	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		10.604
93	неподвижного участка 1. Зона 3. Ручей 5	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %

1	2	3	4	5	6	7	8
94	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
<i>,</i> ,	неподвижного участка 1. Зона 3. Ручей 6	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 =0,0 70
95	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
73	неподвижного участка 1. Зона 3. Ручей 7	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ -±0,0 70
96	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
90	неподвижного участка 1. Зона 3. Ручей 8	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ-10,0 70
	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
97	спреи системы неподвижного участка 2. Зона 4. Ручей 1	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
98	неподвижного участка 2. Зона 4. Ручей 2	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
99	неподвижного участка 2. Зона 4. Ручей 3	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
100	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
100	неподвижного участка 2. Зона 4. Ручей 4	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 ±0,0 /0

1	2	3	4	5	6	7	8
101	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	неподвижного участка 2. Зона 4. Ручей 5	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 10,0 70
102	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
102	неподвижного участка 2. Зона 4. Ручей 6	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 -10,0 70
103	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	неподвижного участка 2. Зона 4. Ручей 7	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 =0,0 70
104	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		.0.50/
104	неподвижного участка 2. Зона 4. Ручей 8	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
105	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		10.604
105	неподвижного участка 3. Зона 5. Ручей 1	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
106	неподвижного участка 3. Зона 5. Ручей 2	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
107	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		v=+0.6.9/
107	неподвижного участка 3. Зона 5. Ручей 3	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %

1	2	3	4	5	6	7	8
108	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
100	неподвижного участка 3. Зона 5. Ручей 4	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 ±0,0 70
109	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		y=±0,6 %
10,7	неподвижного участка 3. Зона 5. Ручей 5	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 20,0 70
110	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
110	неподвижного участка 3. Зона 5. Ручей 6	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 ±0,0 70
111	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
111	неподвижного участка 3. Зона 5. Ручей 7	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %	,	y=±0,0 70
112	Давление воды на входе спрей системы	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
112	неподвижного участка 3. Зона 5. Ручей 8	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ−±0,0 76
113	Температура воды на выходе первичного	от 0 до	Термометр сопротивления СТ8-21	40774-09	Δ=±(0,15+ +0,002·t) °C		Δ=±(1,2+
	контура охлаждения	100 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
114	Температура воды на выходе третичного	от 0 до	Термометр сопротивления СТ8-21	40774-09	Δ=±(0,15+ +0,002·t) °C		Δ=±(1,2+
	контура охлаждения	100 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
115	Температура воды на	от 0 до	Термометр сопротивления СТ8-21	40774-09	Δ=±(0,15+ +0,002·t) °C		Δ=±(1,2+
-	входе бустерных насосов	100 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C

1	2	3	4	5	6	7	8
116	Давление воды на входе	от 0 до 8 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	бустерных насосов		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
117	Давление воды на выходе первичных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	бустерных насосов	15 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5$ %		
118	Давление воды на выходе третичных	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	бустерных насосов	15 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
119	Расход воды на выходе третичного контура	от 34 до 500 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	охлаждения		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
120	Расход воды на байпасе кристаллизатора	от 34 до 500 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5$ %		
101	Давление сжатого воздуха на главной	-065	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
121	линии подачи сжатого воздуха	от 0 до 6 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
100	Давление инструментального	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		10.60/
122	воздуха на главной линии воздуха КИПиА	10 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
123	Давление воды вторичного контура на	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
	охлаждение балок и рам	15 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		•

1	2	3	4	5	6	7	8
124	Расход воды вторичного контура на охлаждение балок и рам	от 9 до 200 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	ошок и рам		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Давление воды на выходе	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		
125	самоочищающегося фильтра вторичного контура	15 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %	γ=-	γ=±0,6 %
126	Расход воды на байпасе вторичного контура	от 20 до 400 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	2.04		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Температура масла в баке гидроблока осциллятора 1	-	Термопреобразователь сопротивления Rosemount 0065	53211-13	Δ=±(0,3+ +0,005·t) °C		
127		гидроблока 07 0 до 100 °C	Преобразователь измерительный 248	28034-04	Δ=±0,2 °C		$\Delta = \pm (1,0+ +0,005 \cdot t) ^{\circ}C$
	оециям гора т		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
·	Уровень масла в баке		Датчик давления Метран-150CD	32854-13	γ=±0,1 %		
128	гидроблока осциплятора 1	от 0 до 1050 мм	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
129	Давление подачи масла гидроблока	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	осциллятора 1	250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		•
	Температура масла в	от 0 до	Термопреобразователь сопротивления Rosemount 0065	53211-13	Δ=±(0,3+ +0,005·t) °C		Δ=±(1,0+
130	баке гидроблока осциллятора 2	100°С	Преобразователь измерительный 248	28034-04	Δ=±0,2 °C		+0,005·t) °C
		_	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
131	Уровень масла в баке гидроблока осциллятора 2	от 0 до 1050 мм	Датчик давления Метран-150CD Модуль 6ES7 331-7KF02-0AB0	32854-13 15772-11	γ=±0,1 % γ=±0,5 %		γ=±0,6 %
132	Давление подачи масла гидроблока	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	осциллятора 2	250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
133	Температура масла в баке НАС5 системы	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ 3212	42454-15	γ=±0,5 %		Δ=±1,0 °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Температура масца в		Термопреобразователь сопротивления Rosemount 0065	53211-13	Δ=±(0,3+ +0,005·t) °C		
134	Температура масла в баке гидроблока зоны разгрузки металла	от 0 до 100 °C	Преобразователь измерительный 248	28034-04	Δ=±0,2 °C		$\Delta = \pm (1,0+ +0,005 \cdot t) \circ C$
	pusipysmimorumu		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Уровень масла в баке	. 0 .	Датчик давления Метран-150CD	32854-13	y=±0,1 %		
135	гидроблока зоны разгрузки металла	от 0 до 1050 мм	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
136	Давление масла в баке гидроблока зоны	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
130	разгрузки металла	250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		7 -0,0 70
	Давление масла в аварийном аккумуляторе		Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		
137	устройства закрытия ручья. Тележка промковша 1. Промковш 1	от 0 до 250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %

1	2	3	4	5	6	7	8
	Давление масла в аварийном аккумуляторе		Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		
138	устройства закрытия ручья. Тележка промковша 1. Промковш 2	от 0 до 250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
	Давление масла в аварийном аккумуляторе		Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		
139	устройства закрытия ручья. Тележка промковша 2. Промковш 1	от 0 до 250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
	Давление масла в аварийном аккумуляторе		Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		
140	устройства закрытия ручья. Тележка промковша 2. Промковш 2	от 0 до 250 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ=±0,6 %
141	Давление масла закрытия на модуле 1	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 1	160 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
142	Давление масла закрытия на модуле 3	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 1	100 0ap	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
143	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 2	100 Oap	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
144	Давление масла закрытия на модуле 3	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 2	160 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
145	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
146	Давление масла закрытия на модуле 3	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 3		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
147	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
148	Давление масла закрытия на модуле 3	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 4		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
149	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 5		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
150	Давление масла закрытия на модуле 3	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %	γ=:	γ=±0,6 %
	ТПМ. Ручей 5	160 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
151	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 6		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
152	Давление масла закрытия на модуле 3	от 0 до	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 6	160 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
153	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 7		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
154	Давление масла закрытия на модуле 3	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 7		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
155	Давление масла закрытия на модуле 1	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
	ТПМ. Ручей 8		Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5\%$		
156	PORMITTIA ITO MOTERITO A	от 0 до 160 бар	Преобразователь давления измерительный S-20	38288-13	γ=±0,25 %		γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
157	Температура подпиточной воды на	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ 3212	42454-15	γ=±0,5 %	Δ=:	Δ=±1,0 °C
	водоводе 1		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
158	Температура подпиточной воды на водоводе 2	термопреобразователь с унифицированным выходным 100°C сигналом ТСМУ 3212	унифицированным выходным	42454-15	γ=±0,5 %		Δ=±1,0 °C
	водоводе 2		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
159	Температура сжатого воздуха на БВО	от минус 50 до плюс 50 °C	Термопреобразователь с унифицированным выходным сигналом УТС 106	47757-11	$\Delta = \pm (0.15 + 0.002 \cdot t) ^{\circ}C,$ $\gamma = \pm 0.25 \%$		Δ=±(0,9+ +0,002· t) °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
160	I HORRISTOHION DONLING	от 0 до 100°C	Термопреобразователь с унифицированным выходным сигналом ТСМУ Метран-274-02	21968-11	γ=±0,5 %		Δ=±1,7 °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	$\gamma=\pm0.5$ %		
161	Расход воды на песчаном фильтре 1	от 53 до 500 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
162	Расход воды на песчаном фильтре 2		Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
163	Расход воды на песчаном фильтре 3	от 53 до 500 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %	δ=±.	δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
164	Расход воды на песчаном фильтре 4	от 53 до 500 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %	δ=±	δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
165	Температура воды на первом входе градирни	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		10,002 t)
166	Удельная электрическая проводимость воды в баке контура СW	от 10 до 2000	Кондуктометр CLM253 с датчиком CLS21	28381-12	δ=±2 %	δ=:	δ=±3,4 %
		мкСм/см	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
167	Расход воды на подпитке контура CW	от 9 до 100 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %	δ=	δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
168	Расход воды на промывке контура CW	от 6 до 100 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Уровень воды в резервуаре контура CW	от 0 до 3000 мм	Преобразователь измерительный давления и уровня Deltapilot M (FMB50)	43650-10	γ=±0,2 %		
169			Преобразователь аналоговых сигналов измерительный универсальный ИДЦ1-Щ8	52101-12	γ=±0,25 %		γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
170	Температура воды в резервуаре контура KW	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+ +0,002·t) °C
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,00211)
171	Расход воды на контуре CW 1	от 213 до 2000 м ³ /ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
	Уровень воды аварийного резервуара контура QW	от 0 до 2000 мм	Преобразователь измерительный давления и уровня Waterpilot FMX167	17575-09	γ=±0,2 %		
172			Преобразователь аналоговых сигналов измерительный универсальный ИДЦ1-Щ8	52101-12	γ=±0,25 %	γ=:	γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
173	Температура воды на входе теплообменника контура QW	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		Δ=±(1,2+
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
174	Расход воды контура QW 1	от 213 до 2000 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %	δ	δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
175	Давление воды в контуре QW 1	от 0 до 10 бар	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %	γ=±	γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
176	Температура воды в контуре QW 1	от 0 до 100°C	Термометр сопротивления СТ8-21	40774-09	$\Delta = \pm (0.15 + 0.002 \cdot t) ^{\circ}C$		$\Delta = \pm (1,2+$
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
177	Удельная электрическая проводимость воды в	от 10 до 2000 мкСм/см	Кондуктометр CLM253 с датчиком CLS21	28381-12	δ=±2 %	δ=±	δ=±3,4 %
	резервуаре контура KW		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
178	Расход подпиточной воды резервуара	от 9 до 150 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	контура KW		Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
179	Расход промывочной воды резервуара контура KW	от 6 до 100 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
		0	Преобразователь измерительный давления и уровня Deltapilot M (FMB50)	43650-10	γ=±0,2 %		
180	Уровень воды в резервуаре контура KW	от 0 до 3000 мм	Преобразователь аналоговых сигналов измерительный универсальный ИДЦ1-Щ8	52101-12	γ=±0,25 %		γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
181	Температура воды в	от 0 до	Термометр сопротивления СТ8-21	40774-09	Δ=±(0,15+ +0,002·t) °C		Δ=±(1,2+
101	резервуаре контура CW	100 °C	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		+0,002·t) °C
182	Расход воды на насосах контура CW	от 136 до 1000 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
	KOHIYPa C W	1000 11/1	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
183	Давление воды на насосах контура KW	от 0 до	Преобразователь давления измерительный Cerabar M (PMP51)	41560-09	γ=±0,15 %		γ=±0,6 %
103		16 бар	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		γ-±0,0 %

11	2	3	4	5	6	7	8
184	Уровень воды в баке обратного контура KW	от 300 до 5000 мм	Уровнемер ультразвуковой Prosonic S: первичный преобразователь FDU91, электронный преобразователь FMU90	17670-13	Δ=±2 мм в диапазоне от 0,3 до 1 м; δ=±0,2 % в диапазоне св. 1 до 5 м		γ=±1,4 % в диапазоне от 300 до 1000 мм; γ=±0,6 % в диапазоне
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		св. 1000 до 5000 мм
185	Уровень воды в баке вертикального шламосгустителя	от 300 до 5000 мм	Уровнемер ультразвуковой Prosonic S: первичный преобразователь FDU91, электронный преобразователь FMU90	17670-13	Δ=±2 мм в диапазоне от 0,3 до 1 м; δ=±0,2 % в диапазоне св. 1 до 5 м		γ=±1,4 % в диапазоне от 300 до 1000 мм; γ=±0,6 % в диапазоне
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		св. 1000 до 5000 мм
186	Уровень шлама в накопительном баке	от 300 до 5000 мм	Уровнемер ультразвуковой Prosonic S: первичный преобразователь FDU91, электронный преобразователь FMU90	17670-13	Δ=±2 мм в диапазоне от 0,3 до 1 м; δ=±0,2 % в диапазоне св. 1 до 5 м		γ=±1,4 % в диапазоне от 300 до 1000 мм; γ=±0,6 % в диапазоне
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		св. 1000 до 5000 мм
187	Расход воды на насосах промывки	от 9 до 200 м³/ч	Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %		δ=±2,2 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

1	2	3	4	5	6	7	8
	Vacabour		Преобразователь измерительный давления и уровня Deltapilot M (FMB50)	43650-10	γ=±0,2 %		γ=±0,6 %
188	Уровень воды в промывочном накопительном баке	от 0 до 3000 мм	Преобразователь аналоговых сигналов измерительный универсальный ИДЦ1-Щ8	52101-12	γ=±0,25 %		
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
189 Уровень воды в водонакопительном баке	от 300 до 5000 мм	Уровнемер ультразвуковой Prosonic S: первичный преобразователь FDU91, электронный преобразователь FMU90	17670-13	$\Delta=\pm 2$ мм в диапазоне от 0,3 до 1 м; $\delta=\pm 0,2$ % в диапазоне св. 1 до 5 м	γ	γ=±1,4 % в диапазоне от 300 до 1000 мм; γ=±0,6 % в диапазоне	
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		св. 1000 до 5000 мм
190	Расход воды на насосе бака обработанной воды		Расходомер электромагнитный OPTIFLUX 2000F с конвертером сигналов IFC 100W	40075-13	δ=±0,65 %	δ=±2,2 %	
	очки обработанной воды	20 W / 1	Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		
			Преобразователь измерительный давления и уровня Deltapilot M (FMB50)	43650-10	γ=±0,2 %		
191	Уровень воды в баке подготовленной воды	от 0 до 5000 мм	Преобразователь аналоговых сигналов измерительный универсальный ИДЦ1-Щ8	52101-12	γ=±0,25 %		γ=±0,6 %
			Модуль 6ES7 331-7KF02-0AB0	15772-11	γ=±0,5 %		

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха AO «ЕВРАЗ 3СМК». Методика поверки

1	2	3	4	5	6	7	8
			Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		
192	Давление газа установки сушки промковшей 1	от 0 до 300 мбар	Модуль ввода токовых сигналов 6ES7 134-4GB01-0AB0 устройства распределительного ввода-вывода SIMATIC ET200 (далее Модуль 6ES7 134-4GB01-0AB0)	22734-11	γ=±0,4 %		γ=±0,4 %
	Температура газа	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		
193	установки сушки промковшей 1	до плюс 40 °C	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$\Delta = \pm (0.7 + +0.002 \cdot t) ^{\circ}C$
	промковшей і	., .	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %		
	Температура горелки установки сушки промковшей 1		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}\text{C}$		
			Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		
194		от 0 до 1300°C	Модуль ввода токовых сигналов 6ES7 134-4GB11-0AB0 устройства распределительного ввода-вывода SIMATIC ET200 (далее Модуль 6ES7 134-4GB11-0AB0)	22734-11	γ=±0,4 %		$\Delta = \pm (7 + +0,0075 \cdot t) ^{\circ}C$
195	Давление газа установки	от 0 до	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %
173	сушки промковшей 2	300 мбар	Модуль 6ES7 134-4GB01-0AB	22734-11	γ=±0,4 %		7 -0,170
	Тамиаратура газа	от минуо 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		
196	Температура газа установки сушки промковшей 2	ки сушки до плюс	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$\Delta = \pm (0.7 + +0.002 \cdot t) ^{\circ}C$
	промковшеи 2		Модуль 6ES7134-4GB01-0AB0	22734-11	γ=±0,4 %		

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха AO «ЕВРАЗ ЗСМК». Методика поверки

1	2	3	4	5	6	7	8	
	Тамиапотура городия		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}\text{C}$			
197	Температура горелки установки сушки	от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		Δ=±(7+ +0,0075·t) °C	
	промковшей 2		Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %			
198	Давление газа установки сушки промковшей 3	от 0 до 300 мбар	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %	
	сушки промковшеи 3	300 моар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	Температура газа	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot \mathbf{t}) ^{\circ}\mathrm{C}$		A-1(0.7)	
199	установки сушки промковшей 3	до плюс 40 °C	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$\Delta = \pm (0.7 + +0.002 \cdot t) ^{\circ}C$	
	1	Ī	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	Total		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}C$			
200	Температура горелки установки сушки промковшей 3	от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		Δ=±(7+ +0,0075·t) °C	
			Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %			
201	Давление газа установки	от 0 до	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %	
	сушки промковшей 4	300 мбар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	Температура газа	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot \mathbf{t}) ^{\circ}\mathrm{C}$		Δ=±(0,7+	
202	установки сушки промковшей 4	до плюс 40 °C	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$+0,002 \cdot \mathbf{t}) ^{\circ}\mathbf{C}$	
			Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	Температура горении		Датчик температуры КТНН	57177-14	Δ = ±(0,0075·t) °C			
203	Температура горелки установки сушки	от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		$\Delta = \pm (7 + +0.0075 \cdot t) ^{\circ}C$	
	промковшей 4		Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %			
204	Давление газа установки разогрева промковшей 1	от 0 до 300 мбар	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %	
	разогрева промковшей т	эоо моар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха AO «ЕВРАЗ ЗСМК». Методика поверки

. 1	2	3	4	5	6	7	8	
	Температура газа	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$			
205	установки разогрева промковшей 1	до плюс 40 °C	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$\begin{array}{c c} \Delta = \pm (0.7 + \\ +0.002 \cdot t) \text{ °C} \end{array}$	
			Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	T		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}\text{C}$			
206	Температура горелки установки разогрева	от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		$\Delta = \pm (7 + +0.0075 \cdot t) ^{\circ}C$	
	промковшей 1		Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %			
207	Давление газа установки	от 0 до	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %			
207	разогрева промковшей 2	огрева промковшей 2 300 мбар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %		γ=±0,4 %	
	Температура газа установки разогрева промковшей 2	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$			
208		до плюс 40 °C	Преобразователь измерительный iTEMP TMT181	57947-14	7947-14 Δ=±0,2 °C		$\Delta = \pm (0.7 + +0.002 \cdot t) ^{\circ}C$	
		40 C	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			
	Т.		Датчик температуры КТНН	57177-14	Δ = ±(0,0075·t) °C			
209	Температура горелки установки разогрева	от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C	$\Delta = \pm (7 + 0.0075 \cdot t)$		
	промковшей 2		Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %			
210	Давление газа установки	от 0 до	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %	
	разогрева промковшей 3	300 мбар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %		, -, -, -	
_	Температура газа	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		A-1(0.7)	
211	установки разогрева промковшей 3	до плюс 40°C	Преобразователь измерительный iTEMP TMT181	57947-14 Δ=±0,2 °C			$\Delta = \pm (0.7 + +0.002 \cdot t)$ °C	
			Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %			

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

1	2	3	4	5	6	7	8
	Томионолумо пополич		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}\text{C}$		
212	Температура горелки установки разогрева	от 0 до 1300°C				$\Delta = \pm (7 + +0.0075 \cdot t) \circ ($	
	промковшей 3	-	Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %		-
213	Давление газа установки разогрева промковшей 4	от 0 до 300 мбар	Преобразователь давления измерительный Cerabar S (PMP71)	41560-09	γ=±0,075 %		γ=±0,4 %
	разогрева промковшей 4	эоо моар	Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %		
	Температура газа установки разогрева промковшей 4	от минус 40	Термопреобразователь сопротивления платиновый TR-61	49519-12	$\Delta = \pm (0.15 + +0.002 \cdot t) ^{\circ}C$		A-1(0.7)
214		ева до плюс Пре 40 °C iTEI	Преобразователь измерительный iTEMP TMT181	57947-14	Δ=±0,2 °C		$\Delta = \pm (0.7+ +0.002 \cdot t) ^{\circ}C$
			Модуль 6ES7 134-4GB01-0AB0	22734-11	γ=±0,4 %		
	Температура горелки установки разогрева промковшей 4		Датчик температуры КТНН	57177-14	$\Delta = \pm (0.0075 \cdot t) ^{\circ}C$		Δ=±(7+ +0,0075·t) °C
215		от 0 до 1300°C	Преобразователь измерительный аналоговых сигналов Z109REG2	59698-15	Δ=±1,5 °C		
			Модуль 6ES7 134-4GB11-0AB0	22734-11	γ=±0,4 %		
			Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		
216	Давление масла на порту А стола качания 1	от 0 до 400 бар	Модуль ввода аналоговых сигналов 6ES7 431-1KF20-0AB0 контроллера программируемого SIMATIC S7-400 (далее Модуль 6ES7 431-1KF20-0AB0)	15773-11	γ=±0,7 %		γ=±0,8 %
217	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту В стола качания 1	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
218	Давление масла на порту А стола качания 2	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
210		400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1	2	3	4	5	6	7	8
219	Давление масла на порту В стола качания 2	от 0 до 400 бар	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту в стола качания 2	400 0ap	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
220	Давление масла на порту А стола качания 3	от 0 до 400 бар	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту А стола качания 3	400 0ap	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
221	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту В стола качания 3	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
222	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %	γ=±0,8 %	γ=±0,8 %
	порту А стола качания 4	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
223	Давление масла на	• от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту В стола качания 4	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
224	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту А стола качания 5	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
225	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту В стола качания 5	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		·
226	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту А стола качания 6	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %	1	
227	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %	γ=±0,8 °C	γ=±0,8 %
	порту В стола качания 6	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
228	Давление масла на	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
	порту А стола качания 7	400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха AO «ЕВРАЗ 3СМК». Методика поверки

1	2	3	4	5	6	7	8
229	Давление масла на порту В стола качания 7	от 0 до 400 бар	Преобразователь давления измерительный PA-23SY				γ=±0,8 %
		400 0ap	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
230	Давление масла на порту А стола качания 8	от 0 до	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
		400 бар	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		
231	231 Давление масла на порту В стола качания 8	от 0 до 400 бар	Преобразователь давления измерительный PA-23SY	49250-12	γ=±0,5 %		γ=±0,8 %
		400 oap	Модуль 6ES7 431-1KF20-0AB0	15773-11	γ=±0,7 %		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Примечание — В таблице приняты следующие обозначения и сокращения: ФИФ ОЕИ — Федеральный информационный фонд по обеспечению единства измерений; Δ — абсолютная погрешность измерений, единица измерений; δ — относительная погрешность измерений, %; γ — приведенная погрешность измерений, %; t — измеренное значение температуры, °C

Приложение Б Образец оформления протокола поверки

(рекомендуемое)

ПРОТОКОЛ ПОВЕРКИ

<u>Nº</u> OT «» 20 Γ.
Средство измерений (СИ): Система измерительная автоматизированной системы регулирования
параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха AO «EBPA3 3CMK»
заводской номер: DP0B9M01
принадлежащее
поверено в соответствии с документом: МП 262-15 «ГСИ. Система измерительная
автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Методика поверки»
с применением эталонов: ———————————————————————————————————
наименование, заводской номер, разряд, класс или погрешность
при следующих значениях влияющих факторов:
– температура окружающего воздуха°С;
атмосферное давление кПа%относительная влажность %;
- напряжение питания B;
– частота Гц.
Результаты операций поверки
1 Рассмотрение документации
2 Внешний осмотр
3 Проверка условий эксплуатации компонентов ИС
4 Опробование ИС
5 Подтверждение соответствия программного обеспечения ИС
6 Проверка обеспечения синхронизации времени
7 Проверка метрологических характеристик измерительных каналов ИС
Результаты проверки метрологических характеристик измерительных каналов ИС приведены в таблице (форма таблицы А.1 Приложения А настоящей методики поверки).
Заключение о пригодности: СИ (не) соответствует метрологическим требованиям, установленным в описании типа.
Должность руководителя подразделения
Поверитель годпись инициалы, фамилия Дата поверки «» 20 г.
Anta 11000 phil 11

Система измерительная автоматизированной системы регулирования параметров машины непрерывного литья заготовок № 1 кислородно-конверторного цеха АО «ЕВРАЗ ЗСМК». Методика поверки

Приложение В Образец приложения к свидетельству о поверке

(рекомендуемое)

		ик ис, единица	Средства измерений, входящие в состав ИК ИС			Основная погрешность ИК ИС		
Номер ИК ИС	Наименование ИК ИС		наименование, тип СИ, заводской номер	номер в ФИФ ОЕИ	пределы допускаемой основной погрешности	фактическая	границы допускаемой погрешности	

Приложение Г Перечень ссылочных нормативных документов

(справочное)

ГОСТ 8.508-84 ГСИ. Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ 18404.0-78 Кабели управления. Общие технические условия.

ГОСТ 26411-85 Кабели контрольные. Общие технические условия.

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров.

РМГ 62-2003 ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

МИ 2439-97 ГСИ. Метрологические характеристики измерительных систем. Номенклатура. Принципы регламентации, определения и контроля.