УТВЕРЖДАЮ

Заместитель директора ФГУП «ВНИИОФИ»

унитарности Т. Амхравская «14» иголя 2015 г

Государственная система обеспечения единства измерений

Комплекс гониофотометрический

Методика поверки

№ MII 073.M4-15

Главный метролог ФГУП «ВИИИОФИ»

____ С.Н.Негода «14» июля 2015

1 Введение

- 1.1 Настоящая методика распространяется на Комплекс гониофотометрический зав. № 001 (далее по тексту комплекс), предназначенный для измерения фотометрических характеристик светодиодных светильников, источников света и другого светотехнического оборудования (далее по тексту источники света) и устанавливает операции при проведении их первичной и периодической поверок.
- 1.2 Интервал между периодическими поверками 1 год. Первичная поверка комплекса должна производиться при его выпуске. Кроме того, поверка должна проводиться после ремонта комплекса, который может вызвать ухудшение его метрологических характеристик, а также после установки новой версии программного обеспечения.

2 Операции поверки

2.1 При проведении первичной и периодической поверок должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта	Проведение операции при	
	настоящей методики	первичной поверке	периодической поверке
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Да	Да
Подтверждение соответствия программного обеспечения	7.3	Да	Да
Определение метрологических характеристик	7.4		
Определение диапазонов измерения силы света, освещенности и светового потока	7.4.1	Да	Да
Определение пределов допускаемой относительной погрешности измерения силы света	7.4.2	Да	Да
Определение пределов допускаемой относительной погрешности измерения освещенности	7.4.3	Да	Да
Определение пределов допускаемой относительной погрешности измерения светового потока	7.4.4	Да	Да

- 2.2 При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.
- Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

3 Средства поверки

3.1 При проведении первичной и периодических поверок должны быть применены средства, указанные в таблице 2.

Таблица 2

Таолица 2			
Номер пункта	Наименование средства поверки; номер документа,		
методики поверки	регламентирующего технические требования к средству,		
-	основные технические характеристики		
7.4.1 – 7.4.4	1 Набор полупроводниковых излучателей (XLD-AC1X01-000-		
	11-ROY ,XLD-AC1X01-000-11-RED, XLD-AC1X01-000-11-		
	WHS, XLD-AC1X01-000-11-GRN, ЭТИС-1-4500) из состава		
	Государственного вторичного эталона единиц силы света		
	непрерывного излучения в диапазоне от 1 до 500 кд и		
	освещенности непрерывного излучения в диапазоне от 1 до		
	10 ⁵ лк по ГОСТ 8.023-2014		
	- диапазон измерений силы света: от 1 до 900 кд;		
	- пределы допускаемой относительной погрешности		
	измерений силы света: \pm 0,3 %.		
	2 Набор полупроводниковых излучателей (XLD-AC1X01-000-		
	11-ROY ,XLD-AC1X01-000-11-RED, XLD-AC1X01-000-11-		
	WHS, XLD-AC1X01-000-11-GRN; ЭТИС-1-4500) из состава		
	Государственного вторичного эталона единицы светового		
	потока непрерывного излучения в диапазоне от 8 до 2300 лм по ГОСТ 8.023-2014		
	300000000000000000000000000000000000000		
	- диапазон измерения светового потока: от 8 до 2300 лм		
	- пределы допускаемой относительной погрешности измерений светового потока: ± 0,5 %		
	З Осветитель эталонный телецентрический "ЭТО-2" из состава		
	Государственного вторичного эталона единиц силы света		
	непрерывного излучения в диапазоне от 1 до 500 кд и		
	освещенности непрерывного излучения в диапазоне от 1 до 300 кд и		
	10 ⁵ лк по ГОСТ 8.023-2014		
	- диапазон измерений силы света: от 1 до 30000 кд		
	- диапазон измерения освещенности: от 1 до 100000 лк;		
	- пределы допускаемой относительной погрешности		
	измерений силы света: ± 0,3 %;		
	- пределы допускаемой относительной погрешности		
	измерений освещенности: ± 0,3 %.		
3.2 Средства пове	рки, указанные в таблице 2, должны быть поверены и		

3.2 Средства поверки, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке. Допускается также применение других средств, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемого комплекса с требуемой точностью.

4 Требования к квалификации поверителя и требования безопасности

- 4.1 К работе с комплексом допускаются лица, изучившие настоящую методику поверки и Руководство по эксплуатации комплекса и средств поверки, имеющие квалификационную группу не ниже III в соответствии с правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328H.
- 4.2 Комплекс гониофотометрический должен устанавливаться в закрытых взрыво- и пожаробезопасных лабораторных помещениях, оборудованных вытяжной вентиляцией и удовлетворяющих требованиям санитарных норм и правил. При проведении испытаний следует соблюдать требования, установленные ГОСТ Р 12.1.031-2010, ГОСТ 12.1.040-83, правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328H. Оборудование, применяемое при испытаниях, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при

температуре помещения, соответствующей условиям испытаний для легких физических работ.

- 4.3 Все устройства, входящие в состав комплекса и находящиеся под напряжением в процессе работы, должны быть заземлены. Вскрытие и проведение ремонтных работ устройств, входящих в состав комплекса, подсоединение (отсоединение) жгутов электромонтажа производятся после отключения питающих напряжений.
- 4.4 При выполнении поверки должны соблюдаться требования, указанные в «Правилах техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором, а также требования руководства по эксплуатации комплекса.
- 4.5 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5 Условия поверки

5.1 При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °С	от 10 до 35;
- относительная влажность воздуха, %, не более	85;
- атмосферное давление, кПа	от 84 до 107;
- номинальное напряжение электропитания, В	220±22;
- номинальная частота, Гц	50±1;
- потребляемый ток, А, не более	16

- 5.2 Помещение, где проводится поверка, должно быть чистым и сухим. В помещении не должно быть кислотных, щелочных и других газов, способных вызвать значительную коррозию металлов, а также газообразных органических растворителей (особенно бензина и разбавителя), способных вызвать коррозию краски.
- 5.3 В помещении не допускаются посторонние источники излучения, мощные постоянные и переменные электрические и магнитные поля.
- 5.4 Рядом с прибором не должно быть источников тепла, таких как газовая горелка, электронагреватель, печь и т.п. Допускаемый перепад температуры в течение суток не более 2 °C.

6 Подготовка к поверке

- 6.1. Перед началом работы с комплексом необходимо внимательно изучить Руководство по эксплуатации, а также ознакомиться с правилами подключения комплекса.
- 6.2 Проверить наличие средств поверки по таблице 2, укомплектованность средств, указанных в таблице, документацией и необходимыми элементами соединений.

7 Проведение поверки

7.1 Внешний осмотр.

- 7.1.1 При внешнем осмотре должно быть установлено:
- соответствие комплектности и маркировки комплекса Руководству по эксплуатации и нормативно-технической документации;
 - отсутствие механических повреждений, влияющих на работу комплекса;
- наличие и прочность органов управления и коммутации, четкость фиксации их положения;
 - чистота гнезд и разъемов.
- 7.1.2 Переместить каждую ось гониометра, входящего в состав комплекса, чтобы подтвердить, что оси гониометра перемещаются в надлежащем направлении.
- 7.1.3 Комплекс считается прошедшим операцию проверки, если корпус, внешние элементы, органы управления не повреждены; отсутствуют механические повреждения и ослабления элементов конструкции, маркировка соответствует требованиям НТД, а комплектность комплектности, приведенной в таблице 3.

Таблица 3

Наименование	Количество, шт.
Комплекс гониометрический:	
Гониометр GO2000B	1
Фотометрическая головка ID-1000	1
Цифровой многофункциональный измеритель мощности PF 2010A	1
Контроллер гониометра СТ400	1
Цифровой источник питания постоянного напряжения и тока WY3010	1
Компьютер	1
Блок питания переменного тока DPS1060	1
Юстировочный лазер YG105674N11060020	1
СД-диск с ПО	1
Руководство по эксплуатации	1
Методика поверки	1

Опробование

- 7.2.1 Включить питание приборной стойки, выключатель моторизованного гониометра GO-2000 (далее гониометр), выключатель контроллера CT 400, электроизмерительного прибора PF2010 A, источника питания DPS 1060 и ПЭВМ. Подключить фотометрическую головку ID-1000 к сети электропитания.
- 7.2.2 Запустить программу GOSoft, дважды нажав на ярлык GOSoft, расположенный на рабочем столе ПК, либо нажать на кнопку Пуск, выбрать меню Все программы, найти Everfine и там нажать на ярлык. В результате вышеописанных действий откроется главное окно программы GOSoft. В меню Operation выберите подменю Goniophotometr Туре свою модель гониофотометра. После чего появится окно, в котором предлагается выбрать конкретную модель: GO –2000A, GO –2000B, GO –2000H, GO –2000J, GO –2000T. Если модель гониометра выбрана верно, то компьютер автоматически подключится к устройству передачи данных. В случае если компьютер не смог подключиться к устройству передачи данных или не был установлен драйвер usb устройства (например, после того как usb кабель устройства передачи данных был вставлен в другой usb разъём) будет выведено следующее сообщение:

«Connect USBCAN device fail! [Index=0]»

7.2.3 В меню Operation выберите пункт System Setup. Появится диалоговое меню (см. рисунок 1).

Если между компьютером и гониометром установлена связь, то в разделе Controller будет надпись ONLINE, а в противном случае NOT ONLINE. Если в разделе Controller присутствует надпись fail to connect the system, это означает, что не был установлен или был установлен некорректно драйвер устройства передачи данных.

EVERFINE 6	O-2000_V1
Controller 60-2000 F1 ONLINE PHOTO No.1 Addr.: ONLINE No.2 Addr.: No.3 Addr.:	PoverMeter Comm. PowerHeter (DFM) Model: TYPE 9 BIT Port: 9 Addr.: Record parameters Deno Run software Deno

Рисунок 1

- 7.2.4 Для управления поворотными механизмами гониометра необходимо в меню Operation выбрать пункт Control. Появится окно Control G0 2000A_V1, в котором есть три раздела Absolute, Speed, Relatively. Для поворота источников света (ИС) или остветительных приборов (ОП) в горизонтальной плоскости на определённый угол относительно нулевой отметки необходимо в разделе Absolute отметить пункт Н Angle и задать значение угла. Потом следует нажать на кнопку Go . Для поворота ИС или ОП в вертикальной плоскости на определённый угол относительно нулевой отметки необходимо в разделе Absolute отметить пункт V Angle и задать значение угла. Для того, чтобы вернуть ИС или ОП в исходное положение необходимо нажать на кнопку RESET .
- 7.2.5 В разделе Speed есть три пункта (High, Medium, Low), которые отвечают за переключение режима скорости работы поворотных механизмов: быстро, средне, медленно.
- 7.2.6 Для поворота ИС или ОП в горизонтальной плоскости на определённый угол относительно текущего положения необходимо в разделе Relatively отметить пункт Н Angle и задать значение угла, на который нужно повернуть раму. Потом следует нажать на кнопку Clockwise или Anticlockwise в зависимости от того в какую сторону следует вращать ИС или ОП: по часовой или против часовой стрелки. Для поворота в вертикальной плоскости следует выбрать пункт V Angle.
- 7.2.7 Комплекс считается прошедшим операцию поверки, если включение всех компонентов прошло успешно, все органы управления работают исправно; приборы, входящие в состав комплекса, поддаются регулировке и после её проведения программное обеспечение не выдает ошибку.

7.3 Подтверждение соответствия программного обеспечения

- 7.3.1 Проверяют соответствие идентификационных данных программного обеспечения сведениям, приведенным в описании типа на комплекс.
- 7.3.3 Для просмотра идентификационных данных программного обеспечения комплекса необходимо запустите программу GOSoft, дважды нажав на ярлык GOSoft,

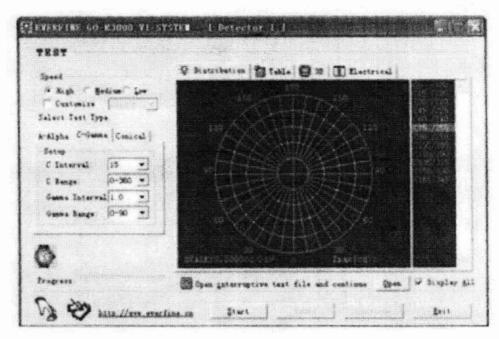
расположенный на рабочем столе ПК. При этом в верхней строке главного окна программы будет отображаться наименование и версия ПО.

7.3.4 Комплекс признается прошедшим операцию поверки, если идентификационные данные программного обеспечения соответствуют значениям, приведенным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	GOSoft
Номер версии (идентификационный номер) ПО	2.0.270 и выше
Цифровой идентификатор ПО	-
Другие идентификационные данные, если имеются	-

7.4 Определение метрологических характеристик


7.4.1 Определение диапазонов измерения силы света, освещенности и светового потока.

- 7.4.1.1 Выполнить юстировку полупроводникового излучателя на гониометре GO-2000В. Установить полупроводниковый излучатель так, чтобы его оптическая ось была перпендикулярна оптической оси фотометрической головки ID-1000, а передняя плоскость совпадала с центром вращения гониометра. После установки полупроводникового излучателя выключить общее и местное освещение
- 7.4.1.2 В программе GOSoft нажать на иконку с лампочкой, открыв таким образом диалоговое окно «Test information» (см. рисунок 2).

V Use Cal.: Test Informat		18-05-14 13- 0.0	584 Sal	ect
Manufacturer	EVERYINE			tomaconomic.
Operators:	DAMIN	Temperature:	25.3	de
Test Date:	2009-01-02	Humidity:	85 0	······································
Bistance (a):	25,000	Type:	Street	•
Remarks:				
Voltage (V):	220.564	Current (A)	2 07732	
Power (Y)	458 182	Power factor:	0.91245	summer.
Lusinaire		Lesp		
Name:	streetlight	Hodel		errierragenter/
Type:		Nominal Power:	400	
Spec		Rated Voltage:	220	у
Dimension:		Forinal Flux	50000	la
Weight:		Test Flux	50000	la
Serial No.		Lamps Insida:		akon nagina
Angle: Illusinant		Test Voltage:	220.6	**************************************
Surface Area(m2)	0.1	Color Constant	HV sodium	lamp 🕶

Рисунок 2

В окне необходимо указать расстояние между испытываемым образцом и фотометрической головкой, а также информацию об испытываемом образце (лампа, светильник и т.п.). Нажать на кнопку «ОК». Появится диалоговое окно «Test», в котором указывается скорость вращения гониометра, тип фотометрической системы, шаг сканирования, диапазон экваториальных и меридиональных углов. Проверить правильность параметров измерения и нажать на кнопку «Start» (см. рисунок 3)

Рисунок 3

- 7.4.1.3 Выполнить прямые измерения освещенности, силы света полупроводникового излучателя XLD-AC1X01-000-11-ROY из набора полупроводниковых излучателей. Измерения проводятся после 15 минутного прогрева полупроводникового излучателя. Измерения выполняются не менее пяти раз.
- 7.4.1.4 Повторить пункты 7.4.1.1-7.4.1.3 для полупроводниковых излучателей XLD-AC1X01-000-11-RED, XLD-AC1X01-000-11-WHS, XLD-AC1X01-000-11-GRN, ЭТИС-1-4500.
- 7.4.1.5 Выполнить прямые измерения светового потока полупроводникового излучателя XLD-AC1X01-000-11-ROY из набора полупроводниковых излучателей. Измерения проводятся после 15 минутного прогрева полупроводникового излучателя. Измерения выполняются не менее пяти раз.
- 7.4.1.6 Повторить пункты 7.4.1.1, 7.4.1.2, 7.4.1.5 для полупроводниковых излучателей XLD-AC1X01-000-11-RED, XLD-AC1X01-000-11-WHS, XLD-AC1X01-000-11-GRN, ЭТИС-1-4500.
- 7.4.1.7 Выполнить юстировку осветителя эталонного телецентрического «ЭТО-2» на гониометре GO-2000В. Установить эталонный телецентрический осветитель «ЭТО-2» так, чтобы фокальная плоскость линзы была перпендикулярна оптической оси фотометрической головки ID-1000, а передняя плоскость линзы совпадала с центром вращения гониометра. После установки осветителя эталонного телецентрического «ЭТО-2» выключить общее и местное освещение.
- 7.4.1.8 В программе GOSoft нажать на иконку с лампочкой, открыв таким образом диалоговое окно «Test information». В окне необходимо указать расстояние между испытуемым образцом и фотометрической головкой, а также информацию об испытуемом образце. Нажать на кнопку «ОК». Появится диалоговое окно «Test», в котором указывается скорость вращения гониометра, тип фотометрической системы, шаг сканирования, диапазон экваториальных и меридиональных углов. Проверить правильность параметров измерения и нажать на кнопку «Start».
- 7.4.1.9 Выполнить прямые измерения освещенности и силы света осветителя эталонного телецентрического «ЭТО-2». Измерения выполняются не менее пяти раз. Измерения проводятся после 15 минутного прогрева осветителя эталонного телецентрического «ЭТО-2».
- 7.4.1.10 Комплекс считается прошедшим операцию поверки, если диапазон измерений силы света составляет от 5 до 150000 кд, диапазон измерения освещенности

составляет от 0.01 до 150 лк, а диапазон измерения светового потока составляет от 1 до 250000 лм.

Диапазон измерений силы света до 150000 кд и светового потока до 250000 лм обеспечивается линейностью фотометра.

7.4.2 Определение пределов допускаемой относительной погрешности измерения силы света.

7.4.2.1 Обработку результатов наблюдений и определения доверительных границ проводят в соответствии с требованиями ГОСТ 8.736-2011 при доверительной вероятности 0,95 и числе измерений n=5. За результат измерения силы света принимают среднее арифметическое результатов наблюдений отдельно для каждого источника света, рассчитанное по формуле 1:

$$\widetilde{I}_k = \frac{1}{5} \sum I_{ki} \,, \tag{1}$$

где I — сила света, измеренная комплексом;

i – номер наблюдения;

 κ — номер источника света.

7.4.2.2 Допускаемое значение относительной погрешности измерения силы света рассчитывается по формуле 2:

$$\Delta_I = 1.1\sqrt{S^2 + \delta_{\rm np}^2} \,, \tag{2}$$

где S — погрешность, обусловленная погрешностью эталонных источников (для ЭТО-2 S = 0,3%, для полупроводниковых излучателей S = 0,3 %)

 $\delta_{\text{пр}}$ - погрешность, вносимая комплексом, которая рассчитывается по формуле 3:

$$\delta_{np} = \left| \frac{\widetilde{I}_k - I_s}{I_s} \right| \cdot 100 \,, \tag{3}$$

где $I_{\mathfrak{I}}$ — эталонное значение силы света эталонных источников, указанное в сертификате калибровки.

7.4.2.3 Комплекс считается прошедшим операцию поверки, если максимальная относительная погрешность измерения силы света не превышает \pm 7 %.

7.4.3 Определение пределов допускаемой относительной погрешности измерения освещенности.

7.4.3.1 Обработку результатов наблюдений проводят в соответствии с требованиями ГОСТ 8.736-2011 при доверительной вероятности 0,95 и числе измерений n=5. За результат измерения освещенности принимают среднее арифметическое результатов наблюдений отдельно для каждого источника света, рассчитанное по формуле 4:

$$\widetilde{E}_k = \frac{1}{5} \sum E_{ki} , \qquad (4)$$

где E — значение освещенности, измеренное комплексом;

i – номер наблюдения;

k — номер источника света.

7.4.3.2 Допускаемое значение относительной погрешности измерения освещенности рассчитывается по формуле 5:

$$\Delta_E = 1.1\sqrt{S^2 + \delta_{\rm np}^2} \,, \tag{5}$$

где S — погрешность, обусловленная погрешностью эталонных источников (для ЭТО-2 S = 0,3 %, для полупроводниковых излучателей S = 0,5 %).

 δ_{np} - погрешность вносимая комплексом, которую рассчитывают по формуле 6:

$$\delta_{np} = \left| \frac{\widetilde{E}_k - E_2}{E_2} \right| \cdot 100 \,, \tag{6}$$

где $E_{\text{э}}$ — эталонное значение освещенности эталонных источников, указанное в сертификате калибровки.

- 7.4.3.3 Комплекс считается прошедшим операцию поверки, если максимальная относительная погрешность измерения освещенности не превышает ± 7 %.
- 7.4.4 Определение пределов допускаемой относительной погрешности измерения светового потока.
- Обработку результатов наблюдений проводят в соответствии с требованиями ГОСТ 8.736-2011 при доверительной вероятности 0,95 и числе измерений n=5. За результат измерения светового потока принимают среднее арифметическое результатов наблюдений отдельно для каждого источника света, рассчитанное по формуле 7:

$$\widetilde{\Phi}_k = \frac{1}{5} \sum \Phi_{ki} \tag{7}$$

где Ф – значение светового потока, измеренное комплексом;

i — номер наблюдения;

 κ — номер источника света.

7.4.4.2 Допускаемое значение относительной погрешности измерения светового потока рассчитывается по формуле 8:

$$\Delta_{\Phi} = 1.1\sqrt{S^2 + \delta_{\rm np}^2} \tag{8}$$

где S – погрешность, обусловленная погрешностью эталонных источников (для ЭТО-2 S = 0.3 %, для полупроводниковых излучателей S = 0.5 %).

 δ_{np} - погрешность вносимая комплексом, которую рассчитывают по формуле 9:

$$\delta_{np} = \left| \frac{\widetilde{\Phi}_k - \Phi_s}{\Phi_s} \right| \cdot 100 \,, \tag{9}$$

где Φ_{3} – эталонное значение светового потока эталонных источников, указанное в сертификате калибровки.

7.4.4.3 Комплекс считается прошедшим операцию поверки, если максимальная относительная погрешность измерения светового потока не превышает ± 7 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Комплекс, прошедший поверку с положительным результатом, признаётся годным и допускается к применению. На него выдаётся свидетельство о поверке установленной формы с указанием полученных по п.п. 7.4.1 - 7.4.4 фактических значений метрологических характеристик комплекса и наносят знак поверки (место нанесения указано в описании типа) согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», и комплекс допускают к эксплуатации.
- 8.2 Комплекс, прошедший поверку с отрицательным результатом, признаётся непригодным, не допускается к применению. Свидетельство о предыдущей поверке и знак поверки аннулируют и выписывают «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Мерсинен Т.Б. Горшкова Ногув Российской Федерации №1815 от 02.07.2015г.

Начальник лаборатории подразделения М-4 ФГУП «ВНИИОФИ»

Инженер 1 категории подразделения М-4 ФГУП «ВНИИОФИ»

Требования методики поверки

протокол

первичной / периодической поверки **OT «** 201 года Средство измерений: Комплекс гониофотометрический Наименование СИ, тип (если в состав СИ входит несколько автономных блоков то приводят их перечень (наименования) и типы с разделением знаком «косая дробь» /) **Зав. №** 001 No/No Заводские номера блоков Принадлежащее Наименование юридического лица, ИНН Поверено в соответствии с методикой поверки № МП 073.М4-15, утвержденной ФГУП «ВНИИОФИ» «14» июля 2015 г. Наименование документа на поверку, кем утвержден (согласован), дата С применением эталонов (наименование, заводской номер, разряд, класс точности или погрешность) При следующих значениях влияющих факторов: (приводят перечень и значения влияющих факторов, нормированных в методике поверки) - температура окружающего воздуха, °С от 10 до 35 - относительная влажность воздуха, %, не более 85 - атмосферное давление, кПа от 84 до 107 - напряжение питания сети, В 220 ± 22 - частота сети, Гц 50 ± 1 Получены результаты поверки метрологических характеристик:

Характеристика

* – диапазон измерений силы света до 150000 кд и светового потока до 250000 лм обеспечивается линейностью фотометра.				
Рекомендации				
Средство измерений признать пригодным (или непригодным) для применения				
Исполнители:				
подписи, ФИО, должность				

Результат