ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки спектрометрические для измерения объёмной активности гаммаизлучающих радионуклидов в жидкости СГЖ-102

Назначение средства измерений

Установки спектрометрические для измерения объёмной активности гамма-излучающих радионуклидов в жидкости СГЖ-102 (далее по тексту - СГЖ) предназначены для измерений объёмной активности гамма-излучающих радионуклидов в жидкости.

Описание средства измерений

Работа СГЖ основана на регистрации гамма-излучения контролируемой среды, находящейся в измерительной камере, полупроводниковым гамма-детектором на основе особо чистого германиевого кристалла (далее - ОЧГ).

Конструктивно СГЖ включают в себя шкаф пробоподготовки (далее - ШПП), шкаф измерительный (далее - ШИ) и шкафы управления (шкаф управления для ШПП, шкаф управления для ШИ и центральный шкаф управления - ЦШУ).

Шкаф пробоподготовки представляет собой металлический шкаф, содержащий: трубопроводную арматуру (далее - ТА), шаровые клапаны с электроприводами, датчики потока, камеру выдержки (далее - КВ), блок детектирования БДКГ-17 (далее - БД, производства компании «АТОМТЕХ», используется для выбора коллиматора), КВ и БД экранированы свинцовой защитой толщиной 50 мм во всех направлениях для уменьшения влияния на внешний фон, герметичный поддон и датчики протечки. Гидравлическая схема шкафа пробоподготовки обеспечивает: подачу контролируемой среды в КВ и перелив в шкаф измерения, подачу химически обессоленной воды (далее - ХОВ, для промывки КВ и ТА), подачу сжатого воздуха (далее - СВ), для продувки КВ и ТА. Гидравлическая схема включает в себя шаровые клапаны с электроприводами и датчики потока для контроля заполнения КВ контролируемой средой и ХОВ.

Шкаф измерительный представляет собой металлический шкаф, содержащий: трубопроводную арматуру (далее - ТА), шаровые клапаны с электроприводами, датчики потока, измерительную камеру (далее - ИК), блок полупроводникового детектора с электроохлаждением (далее - ППД), ИК и ППД экранированы свинцовой защитой толщиной 100 мм во всех направлениях для уменьшения влияния внешнего фона на измерение, герметичный поддон и датчики протечки. Свинцовая защита в своей конструкции содержит подъемный коллиматоршторку (далее - ПКШ), представляет собой свинцовый брус толщиной 80 мм, шириной 110 мм, длиной 450 мм. ПКШ ограничивает видимый объем ИК для ППД и обеспечивает измерения активности в трех поддиапазонах через цилиндрические отверстия диаметром 60, 10 и 2 мм. Гидравлическая схема шкафа пробоподготовки обеспечивает подачу контролируемой среды из шкафа пробоотбора в ИК, ХОВ и СВ для промывки и продувки ИК и ТА. Гидравлическая схема включает в себя клапаны с электроприводами и датчики потока для контроля заполнения ИК контролируемой средой и ХОВ.

ШПП и ШИ оборудованы потолочными холодильными агрегатами, для обеспечения внутреннего микроклимата и нормальных условий работы измерительных устройств.

КВ и ИК представляют собой цилиндрические колбы объемом 1 литр (одинаковые взаимозаменяемые) с обтекаемой внутренней поверхностью, что исключает образование застойных зон. Материал КВ и ИК обладает минимальной сорбирующей способностью и допускает промывку дезактивирующими растворами. КВ и ИК располагаются вертикально и окружены свинцовой защитой.

На время выдержки КВ заполнена контролируемой средой без режима протока. На время измерения ИК заполнена контролируемой из КВ средой без режима протока.

В СГЖ используются один ППД и один БД на основе счетчика Мюллера-Гейгера, каждый из которых состоит из детектора и блока электроники и помещены в герметичный металлический корпус. Блок электроники представляет собой микропроцессорную сборку,

которая осуществляет преобразование сигналов от ОЧГ и газоразрядной трубки в цифровой формат, хранит набранные спектры, осуществляет самодиагностику. Связь ППД, БД и шкафов управления реализована по стандарту Ethernet и RS-485 (интерфейсы только для внутренних взаимосвязей устройств).

При выпуске из производства СГЖ настроены на индикацию результата измерений радионуклидов 131 I, 132 I, 133 I, 134 I, 135 I.

В случае необходимости индикации результата измерений объёмной активности других гамма-излучающих радионуклидов в диапазоне энергий от 50 до 3000 кэВ (например, радионуклидов 134 Cs, 137 Cs, 138 Cs, 140 Ba, 139 Ba, 138 Xe, 135 Xe, 133 Xe, 103 Ru, 138 Cs, 88 Kr, 87 Kr, 85m Kr, 24 Na, 42 K, 41 Ar, 89 Rb, 91 Sr, 92 Sr, 51 Cr, 54 Mn, 56 Mn, 58 Co, 60 Co, 59 Fe, 99 Mo, 95 Zr, 239 Np, 95 Nb, 110m Ag, 187 W) СГЖ необходимо настроить на индикацию результата измерений требуемых радионуклидов - настройка осуществляется заводом изготовителем.

Датчики протока используются для контроля поступления жидкости по трубопроводам и процесса заполнения КВ и ИК.

Шкаф управления содержит промышленный компьютер и набор модулей ввода/вывода на элементной базе WAGO. Центральный шкаф управления оснащен сенсорным экраном для вывода оперативной информации о работе СГЖ.

Результаты измерений с БД и ППД отображаются на дисплее.

Внешний вид СГЖ с указанием мест пломбировки, защиты от несанкционированного доступа (замки), знак утверждения типа, знак поверки и приведены на рисунках 1 и 2.

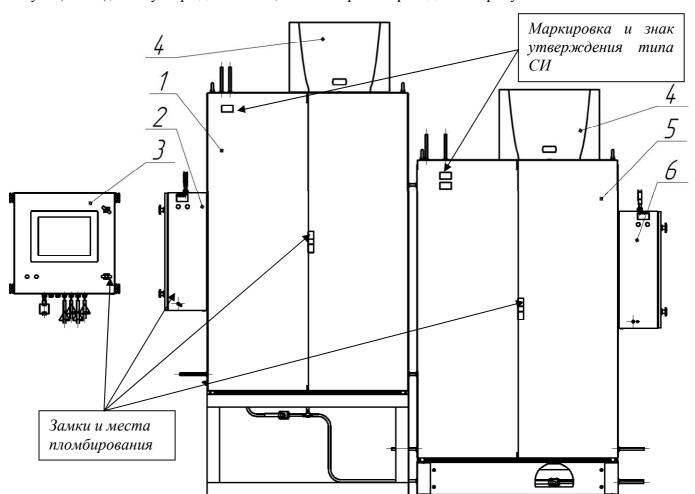


Рисунок 1 - Внешний вид СГЖ и схема пломбировки

- 1) Шкаф пробоподготовки; 2) Шкаф управления шкафом пробоподготовки;
 - 3) Центральный шкаф управления; 4) Агрегат холодильный потолочный;
 - 5) Шкаф измерительный; 6) Шкаф управления шкафом измерительным

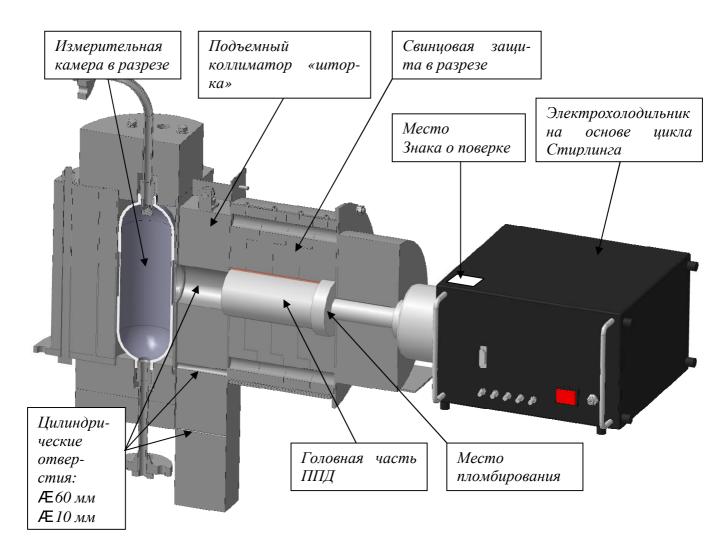


Рисунок 2 - Внешний вид блока детектирования

Программное обеспечение

СГЖ полностью автоматизированная установка со встроенным ПО.

ПО обрабатывает данные с ППД и БД, датчиков потока, датчиков протечки, и управляет открытием/закрытием клапанов в соответствии с заложенным в ПО алгоритмом.

Идентификационные данные приведены в таблице 1.

Таблица 1 - Идентификационные данные

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Встроенное ПО СГЖ-102
Номер версии (идентификационный номер) ПО	1.4.0
Цифровой идентификатор ПО	-
(контрольная сумма исполняемого кода)	
Алгоритм вычисления идентификатора ПО	-

ПО можно идентифицировать при нажатии кнопки «О программе...». На дисплее кратковременно отображается номер версии ПО. Производителем не предусмотрен иной способ идентификации ПО.

Защита встроенного ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

приведены в таблицах 2 и 3.

Таблица 2 - Метрологические и технические характеристики

таолица 2 - Метрологические и технические характеристики	
Наименование характеристики	Значение
	характеристики
Диапазон регистрируемых энергий гамма-излучения, кэВ	от 50 до 3000
Энергетическое разрешение, %, не более:	
- для линии с энергией 122 кэВ	0,85
- для линии с энергией 1332 кэВ	1,80
- для линии с энергией 2614 кэВ	3,50
Общий диапазон измерений объёмной активности радионуклидов 1 в	2.7.104
диапазоне энергий гамма-излучающих радионуклидов от 50 до 3000 кэВ	от 3,7·10 ⁴ до
в измерительном объеме 1 литр, плотность жидкости 1,0 г/см ³ , Бк/м ³	$2,0\cdot10^{11}$
1) Поддиапазон измерений объёмной активности для коллиматора диам	етром 60 мм
	от 2,0⋅10 ⁶ до
- в диапазоне энергий гамма-излучающих от 50 до 100 кэВ, Бк/м ³	$2,7 \cdot 10^{10}$
- в диапазоне энергий гамма-излучающих от 100 до 1500 кэВ, Бк/м ³	от 3,7·10 ⁴ до 1,3·10 ¹⁰
- в диапазоне энергий гамма-излучающих от 1500 до 3000 кэВ, Бк/м ³	от 6,7·10 ⁴ до 3,2·10 ¹⁰
Пределы допускаемой основной относительной погрешности измере-	
ний объёмной активности гамма-излучающих радионуклидов (колли-	±15
матор диаметром 60 мм), %	
2) Поддиапазон измерений объёмной активности для коллиматора диаме	тром 10 мм
_	от $6.2 \cdot 10^8$ до
- в диапазоне энергий гамма-излучающих от 50 до 100 кэВ, $Б \kappa/M^3$	2,0.10
- в диапазоне энергий гамма-излучающих от 100 до 1500 кэВ, Бк/ м 3	от 4,0·10 ⁷ до 2,0·10 ¹¹
- в диапазоне энергий гамма-излучающих от 1500 до 3000 кэВ, Бк/ м 3	от 4,6·10 ⁶ до 9,5·10 ¹⁰
Пределы допускаемой основной относительной погрешности измерений объёмной активности гамма-излучающих радионуклидов (коллиматор диаметром 10 мм), %	±25
3) Поддиапазон измерений объёмной активности для коллиматора диаме	стром 2 мм
- в диапазоне энергий гамма-излучающих от 600 до 1000 кэВ, Бк/ м 3	от 2,7·10 ⁹ до 2,0·10 ¹¹
- в диапазоне энергий гамма-излучающих от 1000 до 1500 кэВ, Бк/ м 3	от 2,5·10 ⁸ до 2,0·10 ¹¹
- в диапазоне энергий гамма-излучающих от 1500 до 3000 кэВ, Бк/ м 3	от 3,9·10 ⁷ до 5,8·10 ¹⁰
Пределы допускаемой основной относительной погрешности измерений объёмной активности гамма-излучающих радионуклидов (коллиматор диаметром 2 мм), %	±40

¹ Фоновые значения мощности амбиентного эквивалента дозы гамма-излучения не более 0,3 мкЗв/ч (условия измерения одинаковы для всех поддиапазонов), время измерений нижнего значения диапазона 1 час,

Наименование характеристики	Значение
Orwayyayya waranyaray waana nanyarayyay watayyyyaa b caayarayyy waxay	характеристики
Отношение чувствительности регистрации источников в геометрии измер к чувствительности регистрации в пике полного поглощения для точечных	-
нуклидов ¹³³ Ba, ¹³⁷ Cs, ⁶⁰ Co по линиям с энергиями 356, 662, 1332 кэВ в фи	
геометрии штатного держателя, $1/\text{м}^3$, не менее	ксированной
1) для коллиматора диаметром 60 мм	
- для коллиматора диаметром об мм - для линии с энергией 356 кэВ	9650
- для линии с энергией 550 кэВ	7920
- для линии с энергией 002 кэВ - для линии с энергией 1332 кэВ	6210
2) для коллиматора диаметром 10 мм	0210
- для кольные с энергией 356 кэВ	$1,483\cdot10^6$
- для линии с энергией 662 кэВ	$0,672 \cdot 10^6$
- для линии с энергией 1332 кэВ	$0,072 \cdot 10^6$
3) для коллиматора диаметром 2 мм	0,133 10
- для колиматора диаметром 2 мм - для линии с энергией 662 кэВ	$6,245\cdot10^{7}$
- для линии с энергией 1332 кэВ	$0,502 \cdot 10^6$
Пределы допускаемой относительной погрешности отношения чувстви-	0,302 10
тельности регистрации источников в геометрии измерительной камеры	
к чувствительности регистрации в пике полного поглощения для точеч-	
ных источников нуклидов ¹³³ Ва, ¹³⁷ Сs, ⁶⁰ Со по линиям с энергиями 356,	± 10
662, 1173 кэВ в фиксированной геометрии штатного держателя для всех	
коллиматоров, %	
Максимальная загрузка БД, с ⁻¹ , не менее	5.104
Предел допускаемой относительной погрешности характеристики	
преобразования (интегральная нелинейность), %, не более	0,05
Долговременная нестабильность энергетической градуировки за 24 ч	
непрерывной работы, %, не более	0,025
Пределы допускаемой дополнительной относительной погрешности из-	
мерений при изменении температуры окружающего воздуха от 0 °C	<u>+2</u>
до 15 °C и от 25 °C до 50 °C, на каждые 10 °C изменения, %	<u></u> 2
Пределы допускаемой дополнительной относительной погрешности из-	
мерений в условиях влажности до 80 % при температуре окружающего	±2
воздуха от 20 °C до 30 °C, %	<u></u> 2
Питание от сети переменного тока:	
	220
•	220
- отклонение от номинального напряжения, В	от 187 до 242
- номинальная частота, Гц	50
- отклонение от номинальной частоты, Гц	от 47 до 53
- содержание гармоник, %	до 5
Потребляемая мощность, В.А, не более	1060
Пределы допускаемой дополнительной относительной погрешности при	•
изменении напряжения сети на -15 % и +10 % от номинального	<u>±</u> 4
значения, %	1 ~
Время установления рабочего режима, мин, не более	15
Режим работы	непрерывный
	круглосуточный

Наименование характеристики	Значение характеристики
Нестабильность показаний за 24 часа непрерывной работы (после уста-	±5
новления рабочего режима), %	
Средняя наработка на отказ, ч, не менее	24000
Средний срок службы, лет, не менее	20
Нормальные условия эксплуатации:	
- температура окружающего воздуха, °С	от 15 до 25
- относительная влажность при температуре окружающего воздуха	
25 °C, %	до 80
- атмосферное давление, кПа	от 84,0 до 106,7
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от 0 до +50
- относительная влажность при температуре окружающего воздуха	
+30 °C и более низких температурах без конденсации влаги, %	до 80
- атмосферное давление, кПа	от 84,0 до 106,7

Таблица 3 - Габаритные размеры и масса СГЖ

Наименование элемента	Габаритные размеры (длина × ширина × высота), мм	Масса, кг
Шкаф пробоподготовки (со шкафом управления и холодильным агрегатом)	1500 × 625 × 2825	550,0
Шкаф измерительный (со шкафом управления и холодильным агрегатом)	1550 × 625 × 2420	870,0
Центральный шкаф управления	660 × 300 × 625	75,0

Знак утверждения типа

наносится в виде наклейки на корпус СГЖ и типографским способом на титульные листы формуляра и руководства по эксплуатации.

Комплектность средства измерений

Комплект поставки СГЖ приведен в таблице 4.

Таблица 4 - Комплект поставки

Обозначение	Наименование	Количество, шт.
СГЖ-102	Установка спектрометрическая для измерения объёмной активности гамма-излучающих радионуклидов в жидкости	1
ВШКФ.414743.004РЭ	Руководство по эксплуатации	1
ВШКФ.414743.004МП	Методика поверки	1
ВШКФ.414743.004ФО	Формуляр	1
ЗИП	Состав ЗИП формируется по требованию заказчика	

Поверка

осуществляется по документу ВШКФ.414743.004 МП «Установки спектрометрические для измерения объемной активности гамма-излучающих радионуклидов в жидкости СГЖ-102. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 20 сентября 2016 г.

Основные средства поверки:

- источники радионуклидные фотонного излучения метрологического назначения закрытые ИМН-Г (регистрационный № 44591-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверки в виде наклейки или оттиска повелительного клейма и на корпус детектора.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к установкам спектрометрическим для измерения объемной активности гамма-излучающих радионуклидов в жидкости СГЖ-102

ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия.

ГОСТ 8.033-96 Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников.

ГОСТ 29074-91 Аппаратура контроля радиационной обстановки. Общие требования.

Установки спектрометрические для измерения объемной активности гамма-излучающих радионуклидов в жидкости СГЖ-102. Технические условия. ВШКФ.414743.004 ТУ.

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «Радиационный контроль. Приборы и методы» (ООО НПП «РАДИКО»)

Юридический адрес: Россия, 249035, Калужская обл., г. Обнинск, пр. Маркса, д. 14 Почтовый адрес: Россия, 249035, Калужская обл., г. Обнинск, пр. Маркса, д. 14

Тел.: (48439) 4-97-16, 4-97-18; Факс: (48439) 4-97-68

E-mail: <u>main@radico.ru</u>. ИНН 4025049439

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»)

Юридический адрес: 141570, Московская область, Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево

Тел./факс (495) 526-63-00

E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	Μπ	<i>"</i>	2017 г