ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительные ЦВ8535

Назначение средства измерений

Комплексы измерительные ЦВ8535 (далее - комплексы) предназначены для измерения падения напряжений на проводах, соединяющих вторичную обмотку трансформатора напряжения и счетчик электрической энергии или другое оборудование в трехфазных трехпроводных или четырехпроводных сетях переменного тока, измерения среднеквадратических значений напряжений в трехфазных или однофазных сетях переменного тока, одновременного измерения среднеквадратических значений напряжения и силы тока одной фазы без разрыва цепи, с последующим вычислением параметров и их отображением на цифровом табло блока комплексов.

Описание средства измерений

Принцип действия комплексов основан на преобразовании аналоговых входных сигналов (напряжения и тока) в цифровой код. Далее производится вычисление измеряемых величин в цифровой форме. Результаты измерений выводятся на табло блоков или хранятся в их энергонезависимой памяти.

В состав комплексов входят: базовый блок, ведомый блок, датчик тока. Комплексы имеют два режима работы: совместный и автономный. Каждый блок имеет встроенный интерфейс RS-485, который обеспечивает обмен информацией между базовым и ведомым блоками при работе в совместном режиме. В совместном режиме работы комплексов производится измерение падений напряжений на проводах. В процессе измерений блоки комплексов работают независимо друг от друга и не требуют соединения между собой. Расстояние между блоками комплексов не ограничено.

Блоки конструктивно состоят из следующих основных узлов: корпуса, платы измерения, платы делителя, модуля карты памяти, жидкокристаллического индикатора (ЖКИ), клавиатуры. Корпус блока выполнен из пластмассы и состоит из основания и крышки. Крышка корпуса крепится к основанию с помощью винтов.

Датчик тока конструктивно состоит из следующих основных узлов: корпуса, имеющего подвижную и неподвижную часть, размыкающегося магнитопровода, двух катушек с обмотками из медного провода, шнура с соединителем для подключения к базовому или ведомому блоку. Подвижная и неподвижная части корпуса выполнены из пластмассы. Они состоят из двух симметричных частей, соединяющихся между собой с помощью винтов.

Питание каждого блока осуществляется по одному из вариантов:

- от сети переменного тока с диапазоном номинальных напряжений от 100 до 240 В частотой от 49,5 до 50,5 Γ ц через сетевой адаптер, преобразующий вышеуказанное напряжение в напряжение постоянного тока 5 В;
- от четырех аккумуляторов с номинальным напряжением 1,2 В и емкостью не менее 2500 мА·ч каждый.

Для обеспечения питания блока от аккумуляторов в нижней части корпуса располагается выдвижной батарейный отсек, выполненный в виде корпуса с крышкой, в котором размещаются четыре аккумулятора.

Сетевые адаптеры, аккумуляторы, устройство зарядное к аккумуляторам входят в комплект поставки комплексов.

Подключение блоков к источникам измеряемых сигналов осуществляется при помощи соответствующих кабелей из комплекта поставки комплексов.

Для хранения и переноски комплексов используется кейс.

Комплексы могут применяться для измерений в энергетике и на энергоемких объектах различных отраслей промышленности.

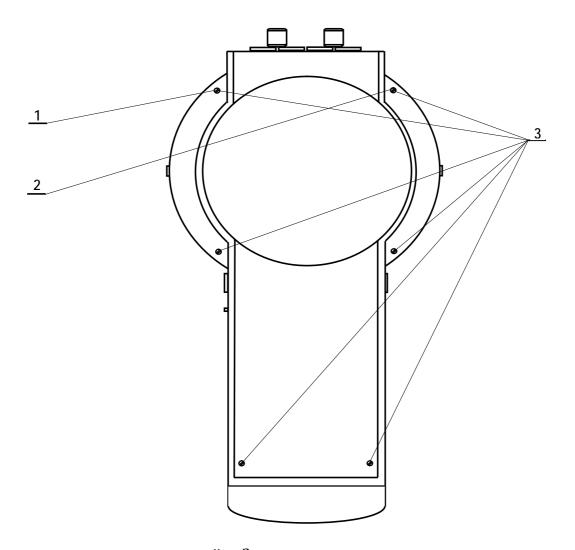

Фотографии общего вида комплексов приведены на рисунке 1.

Схема пломбировки от несанкционированного доступа и указание мест для нанесения оттиска клейма ОТК и оттиска знака поверки средств измерений (далее - Знак поверки) на базовом и ведомом блоках приведены на рисунке 2.

Схема пломбировки от несанкционированного доступа и указание мест для нанесения оттиска клейма ОТК и оттиска знака поверки средств измерений (далее - Знак поверки) на датчике тока приведены на рисунке 3.

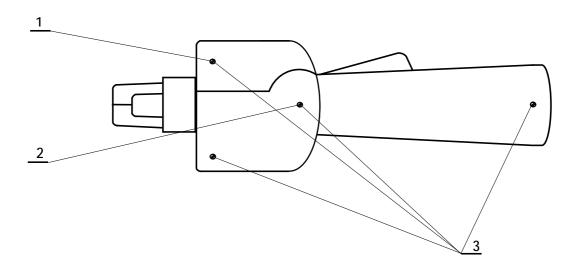


Рисунок 1 - Внешний вид комплексов

- 1 место для нанесения оттиска клейма Знака поверки;
- 2 место для нанесения оттиска клейма ОТК; 3 винты, крепящие крышку корпуса к основанию.

Рисунок 2 - Схема пломбировки от несанкционированного доступа и указание мест для нанесения оттиска клейма ОТК и оттиска клейма Знака поверки на базовом и ведомом блоках (вид сзади)

- 1 место для нанесения оттиска клейма Знака поверки;
- 2 место для нанесения оттиска клейма ОТК;
- 3 винты, крепящие крышку корпуса к основанию.

Рисунок 3 - Схема пломбировки от несанкционированного доступа и указание мест для нанесения оттиска клейма ОТК и оттиска клейма Знака поверки на датчике тока.

Программное обеспечение

Комплексы оснащены встроенным программным обеспечением (далее по тексту - ПО).

ПО является метрологически значимым и метрологические характеристики комплексов определены с его учетом.

ПО хранится в энергонезависимой памяти микроконтроллера комплексов. После установки (прошивки) ПО пережигается перемычка JTAG интерфейса в микроконтроллере.

Конструкция комплексов исключает возможность несанкционированного влияния на ПО комплексов и измерительную информацию.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1

	Значение		
Идентификационные данные (признаки)	ПО	ПО	
	контроллера	измерительного	
	управления	контроллера	
Идентификационное наименование ПО	CV35_main	CV35_izm	
Номер версии (идентификационный номер ПО)	314	300	
Цифровой идентификатор ПО	1DDFD9A5	70D63587	
Другие идентификационные данные, если имеются	CRC232	CRC232	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений высокий по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические характеристики приведены в таблицах 2 и 3.

Таблица 2 - Основные характеристики измеряемых сигналов в зависимости от режимов работы

комплексов и режимов измерений соответствуют значениям

		Измеряемый сигнал		Номина-
Режим работы	Режим измерений	измерении	Норми- рующее значение	льное напряже- ние сети, В
Д 7191	трех напряжений (U_{AN} , U_{BN} , U_{CN}); двух напряжений (U_{AN} , U_{CN}); олного напряжения (U_{AN})	от 0,75 до 75 В	75 B	57,74
		от 1,5 до 150 В	150 B	100
		от 2,5 до 250 В	250 B	230
		от 4,5 до 450 В	450 B	400
3T0		от 0,1 до 2,5 В	2,5 B	-
	силы тока	от 0,05 до 1 А	1 A	-
		от 0,05 до 5 А	5 A	-
вме	трех падений напряжений (DU_{AN} , DU_{BN} , DU_{CN}); двух падений напряжений (DU_{AN} , DU_{CN}); одного падения напряжения (DU_{AN})	от 0 до 60 В	60 B	57,74
		от 0 до 100 В	100 B	100
		от 0 до 230 В	230 B	230
		от 0 до 400 В	400 B	400

Таблина 3

таолица 3	
Наименование характеристики	Значение
Класс точности по ГОСТ 8.401-80:	
- при измерении напряжений и падений напряжений	0,1
- при измерении силы тока	0,25
Пределы допускаемой основной приведенной погрешности от	
нормирующего значения измеряемого сигнала, %:	
- при измерении напряжений и падений напряжений;	$\pm 0,1$
- при измерении силы тока	$\pm 0,25$
Диапазон рабочих температур,°С	от -10 до +50
Пределы допускаемых дополнительных приведенных погрешностей	
от нормирующего значения измеряемого сигнала, %:	
а) при изменении температуры окружающего воздуха от (20±2)°C	
до минус 10°C и плюс 50°C на каждые 10°C:	
- при измерении напряжений и падений напряжений;	± 0.05
- при измерении силы тока.	±0125
б) при воздействии относительной влажности (95±3) % при +35 °C:	
- при измерении напряжений и падений напряжений;	$\pm 0,1$
- при измерении силы тока.	$\pm 0,25$
в) при воздействии внешнего однородного магнитного поля	
переменного тока частотой 50 Гц с магнитной индукцией 0,5 мТл:	
- при измерении напряжений и падений напряжений;	$\pm 0,1$
- при измерении силы тока.	±0,25

Основные технические характеристики комплексов приведены в таблице 4.

Таблина 4

тиолици т	
Наименование характеристики	Значение
Диапазон частот измеряемых сигналов, Гц	от 45 до 65
Входное сопротивление цепей AN, BN, CN каждого блока, Ом, не менее:	_
- на пределах измерений 75 В и 150 В;	$1,5 \times 10^5$
- на пределах измерений 250 B и 450 B	5,0×1 ⁵

Наименование характеристики	Значение
Входное сопротивление входа «~2,5 В» каждого блока, Ом, не менее	$1,5 \times 10^3$
Потребляемая мощность каждым блоком от измерительных цепей AN,	
ВN, CN, ВхА, не более:	
- на пределах измерений 75 В и 150 В;	0,25
- на пределах измерений 250 B и 450 B	0,5
Потребляемая мощность входом «~2,5 В» каждого блока, В:А, не	0.15
более	0,15
Потребляемая мощность каждым блоком от цепи питания	1,5
постоянного тока, Вт, не более	1,3
Габаритные размеры, мм, не более:	
- кейса;	480′380′190
- каждого блока;	290′ 155′ 65
- датчика тока	180′61′42
Масса, кг, не более:	
- комплекса в кейсе	8,0
- каждого блока с аккумуляторами	1,0
- датчика тока	0,45
Средняя наработка на отказ, ч, не менее	25 000
Средний срок службы, лет, не менее	10

Знак утверждения типа

наносится на лицевые панели базового и ведомого блоков КИ методом офсетной печати и на эксплуатационную документацию типографским способом.

Комплектность средства измерений

Комплектность комплексов приведена в таблице 5.

Таблица 5

Наименование	Обозначение	Количество
Комплекс измерительный ЦВ8535. Блок базовый	3ЭП.499.351	1
Комплекс измерительный ЦВ8535. Блок ведомый	3ЭП.499.351-01	1
Датчик тока	5ЭП.577.356	1
Руководство по эксплуатации	3ЭП.499.350 РЭ	1
Методика поверки	МРБ МП.2176-2011	1
Паспорт	3ЭП.499.350 ПС	1
Кабель № 1	5ЭП.503.350	2
Кабель № 2	5ЭП.503.352	2
Кабель № 3*	5ЭП.503.353	1
Кабель интерфейса	5ЭП.503.351	1
Адаптер сетевой GS18E05-P1J	-	2
Вход: $\sim 100 - 240 \text{ B} \pm 10 \%$, 50Γ ц, 0.5 A		
Выход: $= 5 \text{ B}, \ge 1 \text{ A}, \ge 5 \text{ Br**}$		
Аккумулятор GP 270AAHC 1,2 V, 2500 mA·h**	-	8
Устройство зарядное R0BITON Smart S100 (AA c	-	1
зарядным током до 800 mA)**		
Карт-ридер MS.SO.MMC Card Reader**	-	1
Зажим типа "крокодил" А23С	-	
- красный		6
- черный		2
Наконечник измерительный PSK-4	-	
- красный		6
- черный		2

Продолжение таблицы 5

Наименование	Обозначение	Количество	
Кейс	5ЭП.804.350	1	
* Используется при поверке комплексов.			
** Допускается замена на другой тип с аналогичными техническими характеристиками.			

Поверка

осуществляется по документу МРБ МП.2176-2011 «Комплексы измерительные ЦВ8535. Методика поверки», утвержденному РУП «Витебский ЦСМС» 15.07.2011 г.

Основные средства поверки:

установка поверочная универсальная УППУ-МЭ (регистрационный номер в Федеральном информационном фонде 57346-14);

частотомер электронно-счетный Ч3-54 (регистрационный номер в Федеральном информационном фонде 5480-76);

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на базовый, ведомые блоки и на датчик тока в виде оттиска поверительного клейма на мастику, уложенную в углубление корпуса над верхним винтом слева, крепящим две части корпуса, и в виде печати в паспорт или в свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам измерительным ЦВ8535

ТУ ВУ 300080696.350-2011 Комплекс измерительный ЦВ8535. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Многопрофильное научно-производственное предприятие «Электроприбор» (ООО «МНПП «Электроприбор»), Республика Беларусь

Адрес: 210001, г. Витебск, ул. Зеньковой, д.1

Телефон / факс: 10 375 (212) 67-28-16

E-mail: electropribor@mail.ru Web-сайт: www.electropribor.com

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: 8 (495) 437-55-77; Факс: 8 (495) 437-56-66

E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	Μπ	« »	2017 I