ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН MSW»

Назначение средства измерений

Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН MSW» предназначены для измерения массовой доли серы, свинца, марганца и железа в нефти и нефтепродуктах.

Описание средства измерений

Принцип действия анализатора - рентгенофлуоресцентная волнодисперсионная спектрометрия. Анализируемую пробу помещают в кювету, облучают первичным излучением рентгеновской трубки и измеряют интенсивность вторичного флуоресцентного излучения от образца на длинах волн, соответствующих сере, свинцу, марганцу и железу.

Аналитический сигнал формируется как разность скорости счёта импульсов на линиях серы, свинца, марганца и железа и фона. Оптимальные соотношения «сигнал/фон», статистически достаточное время счета на линиях определяемых элементов и фона, градуировочные характеристики, связывающие аналитический сигнал и массовую долю серы, свинца, марганца и железа в соответствующем диапазоне измерений, а также эксплуатационные параметры задаются заводскими установками.

Анализатор является стационарным настольным прибором, для управления и обработки информации используется встроенное микропроцессорное устройство. Программное обеспечение (ПО) анализатора предназначено для управления его работой и процессом измерений.

Конструктивно анализатор состоит из спектрометрического блока и блока вакуумного насоса дополнительным оборудованием ДЛЯ подключения источника Спектрометрический блок включает В себя: рентгеновскую трубку, сканирующий рентгеновский спектрометрический канал кристаллом-анализатором, c (пропорциональный счетчик), устройство водяного охлаждения. Анализатор может работать в двух режимах, отличающихся средой оптического контура, который можно вакуумировать или заполнять гелием.

Измерение массовой доли серы, свинца, марганца и железа в образце включает последовательный анализ двух проб нефти или нефтепродукта (единичные измерения). На экране, на передней панели анализатора, отображаются результаты двух единичных измерений, разность между ними, а также среднее арифметическое значение массовой доли определяемого элемента (результат измерения), эти же результаты выводятся на печать на встроенный принтер.

Анализатор имеет возможность подключения к персональному компьютеру типа IBM PC/AT через последовательный интерфейс RS 232C или интерфейс USB.

Анализаторы могут эксплуатироваться как в стационарных условиях, так и в составе передвижных лабораторий. Внешний вид анализаторов показан на рисунке 1. Места пломбирования анализаторов показаны на рисунке 2.

Рисунок 1 - Внешний вид анализатора СПЕКТРОСКАН MSW

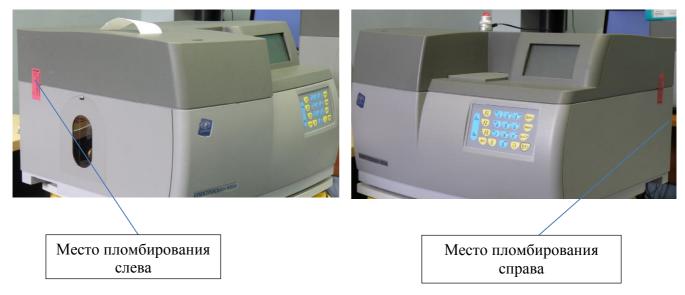


Рисунок 2 - Места пломбирования анализатора СПЕКТРОСКАН MSW

Программное обеспечение

Анализаторы оснащаются встроенным ПО «SPW-D3» и автономным ПО «Количественный анализ», которое управляет работой анализатора отображает, обрабатывает и хранит полученные данные.

Идентификационные данные встроенного ПО приведены в Таблице 1, идентификационные данные автономного ПО приведены в Таблице 2.

Таблица 1 - Идентификационные данные встроенного ПО

Идентификационное наименование ПО	SPW-D3
Номер версии (идентификационный номер) ПО	Не ниже 5.0
Цифровой идентификатор ПО	-

Таблица 2 - Идентификационные данные автономного ПО

Идентификационное наименование ПО	Количественный анализ	
Номер версии (идентификационный номер) ПО	Не ниже 4.0.0.300	
Цифровой идентификатор ПО	Цифровая подпись* SPECTRON NPO LTD	
* Проверка цифровой подписи выполняется средствами операционной системы персонального компьютера (просмотр свойств файла)		

Встроенное и автономное ПО является полностью метрологически значимым.

Встроенное ПО выполнят следующие функции:

- управление анализатором;
- проведение диагностических проверок анализатора и отдельных его блоков;
- обработку и хранение результатов измерений.

Автономное ПО выполнят следующие функции:

- управление анализатором;
- настройка режимов работы анализатора;
- обработка и хранение результатов измерений;
- построение градуировочных графиков.

Уровень защиты встроенного и автономного ПО анализаторов «высокий», согласно Р 50.2.077-2014. Влияние ПО на метрологические характеристики учтено при их нормировании.

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики

Tuosingu 5 Wierposiorii reekiie Aupukrepiieriikii		
Метрологические характеристики при измерении массовой доли серы в нефти и нефтепродуктах.		
Диапазон измерений массовой доли серы, мг/кг	от 3 до 50000	
Пределы допускаемой абсолютной погрешности при		
измерении массовой доли серы, мг/кг		
• в диапазоне от 3 до 500 включ. мг/кг	$\pm (0.039 \cdot X + 1.3)$	
• в диапазоне свыше 500 до 50000 мг/кг	$\pm (0.0415 \cdot X)$	
	где: Х - массовая доля серы, мг/кг	
Пределы повторяемости результатов единичных		
измерений (Р=0,95), мг/кг		
• в диапазоне от 3 до 500 мг/кг	$0,7425 \cdot X^{0,271}$	
• в диапазоне свыше 500 до 50000 мг/кг	0,017·X-4,5	
	где: Х - массовая доля серы, мг/кг	
Метрологические характеристики при измерении м	массовой доли свинца в нефти и	
нефтепродуктах		
Диапазон измерений массовой доли свинца, мг/кг	от 2,0 до 50	
Пределы допускаемой абсолютной погрешности при	$\pm (1,1+0,09\cdot X)$	
измерении массовой доли свинца, мг/кг где: Х - массовая доля свинца, мг		
Предел повторяемости результатов единичных	$0.7 + 0.02 \cdot X$	
измерений (Р=0,95), мг/кг	где: Х - массовая доля свинца, мг/кг	

¹ Модуль разности между двумя последовательными измерениями.

Продолжение таблицы 3

Метрологические характеристики при измерении м	ассовой доли марганца в нефти и
нефтепродуктах	
Диапазон измерений массовой доли марганца, мг/кг	от 2,0 до 50
Пределы допускаемой абсолютной погрешности при	$\pm(0.5+0.08\cdot X)$
измерении массовой доли марганца, мг/кг	где Х - массовая доля марганца, мг/кг
Предел повторяемости результатов единичных	$0.45 + 0.02 \cdot X$
измерений (Р=0,95), мг/кг	где Х - массовая доля марганца, мг/кг
Метрологические характеристики при измерении п	массовой доли железа в нефти и
нефтепродуктах	
Диапазон измерений массовой доли железа, мг/кг	от 2,0 до 50
Пределы допускаемой абсолютной погрешности при ±(0,6 + 0,08·X)	
измерении массовой доли железа, мг/кг где Х - массовая доля железа, м	
Предел повторяемости результатов единичных	$0.5 + 0.02 \cdot X$
измерений (Р=0,95), мг/кг	где Х - массовая доля железа, мг/кг

Таблица 4 - Основные технические характеристики

таолица т основные техни теские характеристики	
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	220±22
Потребляемая мощность, В-А, не более	750
Габаритные размеры спектрометрического блока, мм, не более	530x480x340
Масса спектрометрического блока, кг, не более	40
Габаритные размеры блока вакуумного насоса, мм, не более	330x230x380
Масса блока вакуумного насоса, кг, не более	9
Средний срок службы, лет	8
Наработка на отказ, ч, не менее	15000
Условия эксплуатации:	
· температура окружающей среды, °С	от +15 до +30
· значение относительной влажности при +25 °C, %, не более	80
• атмосферное давление, кПа	от 84 до 107
· частота синусоидальных вибраций, Гц	от 5 до 35
амплитуда вибросмещения, мм, не более	0,35

Знак утверждения типа

наносится на заднюю панель анализатора в виде наклейки и на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество	Примечание
Блок спектрометрический	PA18.000.000	1	
Блок вакуумного насоса	PA5.400.000	1	
Фонарь	PA6.000.050	1	
Комплект монтажных частей		1	
Шланг вакуумный	PA5.610.000	1	
Кабель интерфейсный	RS 232C или USB	1	
Кабель сетевой		1	
Устройство бесперебойного питания		1	Покупное
Комплект запасных частей, инструмента		1	в соответствии с
и принадлежностей		1	ведомостью ЗИП
Паспорт	РА18.000.000ПС	1	
Руководство по эксплуатации	РА18.000.000РЭ	1	_
Методика поверки	МП-242-2040-2016	1	_

Поверка

осуществляется по документу МП-242-2040-2016 «Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН MSW». Методика поверки», утвержденному Φ ГУП «ВНИИМ им. Д.И. Менделеева» 25.09.2016 г.

Основные средства поверки: стандартные образцы массовой доли серы в минеральном масле: Γ CO 9513-2010 (CH-0,0003-HC), Γ CO 9405-2009 (CH-0,030-HC), Γ CO 9407-2009 (CH-0,100-HC), Γ CO 9416-2009 (CH-5,000-HC), стандартные образцы содержания металлов в нефтепродуктах: CO CMH-ПА (Mn, Fe, Pb)-2 (Γ CO 10066-2012), CO CMH-ПА (Mn, Fe, Pb)-50 (Γ CO 10066-2012).

Допускается применение других стандартных образцов, допущенных к применению в Российской Федерации в установленном порядке и обеспечивающих определение метрологических характеристик анализатора с требуемой точностью.

Знак поверки наносится на лицевую панель анализатора, как показано на рисунке 1.

Сведения о методиках (методах) измерений

- Анализаторы рентгеновские флуоресцентные волнодисперсионные «СПЕКТРОСКАН MSW». Руководство по эксплуатации РА18.000.000 РЭ.
- ГОСТ Р 53203-2008. «Нефтепродукты. Определение серы методом рентгенофлуоресцентной спектрометрии с дисперсией по длине волны».
- ГОСТ Р 52660-2006. «Топлива автомобильные. Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны».
- ГОСТ ISO 20884-2012. «Топлива автомобильные. Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны».

Нормативные и технические документы, устанавливающие требования к анализаторам рентгеновским флуоресцентным волнодисперсионным «СПЕКТРОСКАН MSW»

Технические условия ТУ 4276-010-23124704-2015

Изготовитель

Общество с ограниченной ответственностью "Научно-производственное объединение "СПЕКТРОН" (ООО "НПО "СПЕКТРОН")

ИНН 7826101943

Адрес: 190103, Санкт-Петербург, ул. Циолковского, д.10, лит. А

Тел: +7(812) 325-81-83, факс: +7(812) 325-85-03; E-mail: info@spectron.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева».

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон (812) 251-76-01,факс: (812) 713-01-14

Web-сайт: http://www.vniim.ru; E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	M		2017
	М.п.	« »	2017 г.