УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Тест-С.-Петербург»

Т.М. Козлякова

2016 г.

КОМПЛЕКТ ИЗМЕРИТЕЛЬНЫХ СРЕДСТВ КИС

МЕТОДИКА ПОВЕРКИ

ИПВС.056.000 МП

ОГЛАВЛЕНИЕ

1. ОБЩИЕ СВЕДЕНИЯ	3
2. ОПЕРАЦИИ ПОВЕРКИ	4
3. СРЕДСТВА ПОВЕРКИ	4
4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
6. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ	5
7. ПРОВЕДЕНИЕ ПОВЕРКИ	6
8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	14
ПРИЛОЖЕНИЕ А. СХЕМЫ СОЕДИНЕНИЙ ПРИ ПОВЕРКЕ	15

1. ОБЩИЕ СВЕДЕНИЯ

Настоящая методика распространяется на комплекты измерительных средств КИС и устанавливает порядок первичной поверки, поверки после ремонта и периодической поверки.

Комплект измерительных средств КИС (далее, прибор) изготавливается по техническим условиям ИПВС.056.000ТУ и обеспечивает измерение среднего квадратического значения виброускорения, среднего квадратического значения виброскорости, размаха виброперемещения, статических (медленно меняющихся) сил, напряжений постоянного тока и частоты вращения роторов.

Рекомендуемый межповерочный интервал - не реже одного раза в год.

2. ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.
 Таблица 1 - Операции поверки

		Tierran	Проведение операции	
№ п/п	Наименование операции	Номер пункта	первичная поверка	периодическая поверка
1	Внешний осмотр	7.1	Да	Да
2	Опробование	7.2	Да	Да
3	Определение относительной погрешности измерений параметров вибрации: средне-квадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в соответствующих диапазонах частот и амплитуд		Да	Да
4	Определение относительной погрешности измерений статических (медленно меняю- щихся) сил	7.4	Да	Да
5	Определение относительной погрешности измерений напряжения постоянного тока	7.5	Да	Да
6	Определение погрешности измерения частоты вращения ротора	7.6	Да	Да

- Определение относительной погрешности измерений статических (медленно меняющихся) сил по п. 5 таблицы 1 производится при наличии в комплекте прибора весоизмерительных датчиков.
- 2.3. Определение относительной погрешности измерений напряжения постоянного тока по п. 6 таблицы 1 производится при наличии в составе прибора каналов измерений напряжения постоянного тока.
- Допускается при проведении поверки определять относительную погрешность измерений параметров вибрации, задавая только один параметр – виброускорение, виброскорость или виброперемещение.
- Допускается выполнение неполного объема операций поверки в зависимости от комплектации КИС по желанию заказчика.

3. СРЕДСТВА ПОВЕРКИ

 При проведении поверки должны быть применены средства и вспомогательное оборудование, показанные в таблице 2.

Таблица 2 - Основное рабочее оборудование для поверки

Hamananan	Основные технические характеристики		
Наименование —	Пределы измерений	Класс, разряд, погрешность	
Рабочий эталон вибрации 2 разряда по ГОСТ Р 8.800-2012	$2 \cdot 10^{-6} - 2 \cdot 10^{-4}$ м $4 \cdot 10^{-5} - 1 \cdot 10^{-1}$ м/с $4 \cdot 10^{-2} - 1 \cdot 10^{2}$ м/с ² $5 \cdot 10^{-1} - 2 \cdot 10^{3}$ Гц	δο=2·10 ⁻² -5·10 ⁻²	

Продолжение таблицы 2

Наименование	Основные технические характеристики			
паименование	Пределы измерений	Класс, разряд, погрешность		
Машина силоизмерительная ДО-2-5 (Регистрационный № 1834-63)	от 10-50000 Н	1 разряд		
Генератор сигналов произвольной формы Agilent 33220A (Регистрационный № 62209-15)	±10 В от 1·10 ⁻³ до 20·10 ⁶ Гц	$\pm (1+0.01\text{U}) \text{ MB}$ $\Pi\Gamma \pm (20\cdot10^{-6}\cdot\text{F}+3\cdot10^{-12})$		
Мультиметр KeySight 34401A (Регистрационный № 54848-13)	постоянное напряжение от 100 мВ до 1000 В; переменное от 3 Гц до 300 кГц, от 100 мВ до 750 В;	ПГ ±(0,04D+0,03E) %, где D – показание прибора, E – верхнее граничное значение диапазона измерений		
Установка тахометрическая УТ05-60 ТУ25-04.3300-87 (Регистрационный № 6840-78)	10-60000 об/мин	ΠΓ ±0,05%		

- Допускается применение других средств поверки и вспомогательного оборудования с характеристиками, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 3.3. Все эталонные средства измерений должны быть поверены и иметь действующие свидетельства о поверке, или аттестованы в качестве эталона.

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке прибора допускаются лица, изучившие эксплуатационную документацию на прибор, средства поверки прибора, имеющие опыт поверки; а также прошедшие инструктаж по технике безопасности в установленном порядке.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 8.285-78 и «Правилами техники безопасности при эксплуатации электроустановок потребителей», утвержденными «Росэнергонадзором».

Монтаж электрических соединений, а так же электрические испытания должны производится в соответствии с ГОСТ 12.3.019 и «Правилами устройства электроустановок».

6. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 6.1. При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха, °С

23±5;

- относительная влажность воздуха, %

65±20:

- атмосферное давление, кПа (мм.рт.ст.)

от 84 до 106,7 (630-800);

- частота питающей сети, Гц

50±0.5;

- напряжение питающей сети переменного тока, В

220±4,4.

- Условия проведения поверки должны контролироваться в начале и в конце выполнения каждой операции.
- 6.3. Перед началом проведения поверки прибор должен быть выдержан в условиях проведения поверки не менее 1 часа.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре проверяют маркировку, комплектность и целостность технических средств прибора.

- 7.1.1 Проверка маркировки.
- 7.1.1.1 Маркировка датчиков:
- на боковой поверхности вибропреобразователей должны быть выгравированы обозначение (393В04 или 608А11) и заводские номера;
- на боковой поверхности корпуса таходатчика должно быть нанесено обозначение ДВО-02 и заводской номер;
- на боковой поверхности весоизмероительных датчиков М70К должно быть нанесено обозначение М70К и заводской номер;
 - 7.1.1.2 Маркировка блока измерительного:
- на крышке транспортировочного кейса с внутренней стороны должно быть нанесено наименование «Комплект измерительных средств КИС», реквизиты предприятия-изготовителя, заводской номер, дата выпуска (месяц, год).
 - 7.1.2 Проверка комплектности.
 - 7.1.2.1 При проверке должно быть установлено:
 - наличие эксплуатационной документации;
- наличие комплекта технических средств прибора в соответствии с комплектностью, предусмотренной в формуляре ИПВС.056.000ФО.
 - 7.1.2.2 Заводские номера должны совпадать с номерами в формуляре.
 - 7.1.3 Проверка целостности и наличия опломбирования прибора.
- 7.1.3.1 Датчики, соединительные кабели, блок измерительный блок и компьютер не должны иметь механических и других повреждений.
- 7.1.3.2 Не допускается к дальнейшей поверке прибор, имеющий неудовлетворительное крепление клемм, разъемов, грубые механические повреждения, обугливание изоляции и прочие повреждения.
- 7.1.3.3 Результаты проверки считаются удовлетворительными, если выполнены все требования п.7.1.

7.2 Опробование

- 7.2.1 При опробовании устанавливается работоспособность прибора, для чего:
- подключить кабель заземления прибора. Заземление прибора выполняется медным проводником сечения не менее 1,5 мм² соединением заземляющей клеммы на верхней панели блока измерительного с существующей линией заземления (либо подсоединить сетевой кабель питания с заземляющим контактом).
- подключить первичные преобразователи к соответствующим входным каналам блока измерительного.
 - подключить интерфейсный кабель к USB-разъему управляющего компьютера
- подключить сетевой кабель управляющего компьютера к розетке сетевого питания блока измерительного.
 - подключить сетевой кабель блока измерительного к питающей сети.
 - тумблер K1 включения питания перевести в положение «Вкл».
 - на панели блока измерительного наблюдать свечение светодиодных индикаторов.
- 7.2.2 Провести проверку соответствия программного обеспечения в соответствии с таблицей 3.

Таблица 3 - Илентификационные данные ПО

Номер версии (идентификационный номер) ПО	6.01
Наименование ПО	mVibro
Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	f6246babf8390823c3ba15ddef8a5c41

- 7.2.3 Пользуясь указаниями руководства по эксплуатации ИПВС.056.000 РЭ включить ПК и запустить программу «mVibroTest8». Запуск программы осуществляется с помощью иконки, находящейся на рабочем столе компьютера.
 - 7.2.4 Включить режим непрерывного ввода данных и нажать кнопку «Пуск».
- 7.2.5 Поочередно воздействуя легким постукиванием по корпусу вибропреобразователей наблюдать изменения показаний одного из параметров – среднеквадратического значения виброускорения, среднеквадратического значения виброскорости или размаха виброперемещения в таблице измерений и графиков вибрационных сигналов на экране компьютера.
- 7.2.6 Пользуясь указаниями руководства по эксплуатации ИПВС.056.000 РЭ запустить программу «mVibroTestM70K». Запуск программы осуществляется с помощью иконки, находящейся на рабочем столе компьютера.
- 7.2.7 Поочередно создавая силовое воздействие на весоизмерительные датчики наблюдать изменение значения показания силы в информационном окне на экране компьютера.
- 7.2.8 Прибор считают выдержавшим поверку по п.7.2, если при воздействии на вибропреобразователи и весоизмерительные датчики зафиксированы изменения показаний прибора.
 - 7.3. Определение относительной погрешности измерения параметров вибрации
- 7.3.1 Определение относительной погрешности измерения среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в соответствующих диапазонах амплитуд

Относительные погрешности измерений среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в соответствующих диапазонах амплитуд определять для многоканального измерительного блока КИС.

- 7.3.1.1 Собрать схему соединений в соответствии с Рисунком 1 Приложения А.
- 7.3.1.2 Задать последовательно среднеквадратические значения напряжения эквивалентные виброускорению A^a_{oop} в диапазоне амплитуд от 0,04 м/c² до 70,7 м/c² на базовой частоте 160 Γ ц в соответствии с таблицей 4.

Таблица 4

Акселерометр ¹⁾	Uзад²), мВ	A^a_{obpi} , M/c^2	A_i^a , M/c^2	84, %
393B04	4,10	0,04		
393B04	5,21	0,05		
	52,27	0,5		
	10,20	1		
	20,40	2		
608A11	50,92	5		
000A11	101,84	10		
	203,95	20		
	508,74	50		
	714,15	70,7		

- 1) Для амплитуд виброускорения в диапазоне от 0.04 м/c^2 до 0.5 м/c^2 использовать вибропреобразователь 393B04, для амплитуд виброускорения в диапазоне от 0.5 м/c^2 до 70.7 м/c^2 использовать вибропреобразователь 608A11
- Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра
- 7.3.1.3 Зафиксировать показания среднеквадратических значений виброускорения A_i^a прибора.
- 7.3.1.4 По результатам измерений вычислить относительную погрешность измерения среднеквадратического значения виброускорения δ^a_{A} в диапазоне амплитуд в % по формуле (1):

$$\delta_{Ai}^{a} = \frac{A_{o\delta pi}^{a} - A_{i}^{a}}{A_{o\delta pi}^{a}} 100 \tag{1}$$

где $A^a_{n\delta pi}$ - заданное среднеквадратическое значение виброускорения, м/с²;

 A_i^a - измеренное среднеквадратическое значение виброускорения, м/с².

7.3.1.5 Задать последовательно среднеквадратические значения напряжения эквивалентные виброскорости $V_{oбрi}^a$ в диапазоне амплитуд от 0.04 мм/с до 100 мм/с на базовой частоте 160 Γ ц в соответствии с таблицей 5.

Таблица 5

Акселерометр ¹⁾	Uзад²), мВ	V^a_{obpi} , MM/c	Via, MM/c	$\delta^a_{v_i}$, %
393B04	16,2	0,04		
393B04	20,3	0,5		
	12,8	1		
	19,2	2		
	25.6	5		
608A11	32	10		
	51,2	20		=======================================
	64	50		
	128	100		

 Для амплитуд виброскорости в диапазоне от 0,04 мм/с до 1 мм/с использовать вибропреобразователь 393В04, для амплитуд виброскорости от 1 мм/с до 100 мм/с использовать вибропреобразователь 608А11

2) Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра

7.3.1.6 Зафиксировать показания среднеквадратических значений виброскорости V_i^a прибора.

7.3.1.7 По результатам измерений вычислить относительную погрешность измерения среднеквадратического значения виброскорости δ^{σ}_{ij} в диапазоне амплитуд в % по формуле (2):

$$\delta_{Vt}^{a} = \frac{V_{o\delta pt}^{a} - V_{t}^{a}}{V_{o\delta pt}^{a}} 100 \tag{2}$$

где $V^a_{o\delta pi}$ - заданное среднеквадратическое значение виброскорости, мм/с;

 V_i^a - измеренное среднеквадратическое значение виброскорости, мм/с.

7.3.1.8 Задать последовательно значения напряжения эквивалентные размаху виброперемещения $S^a_{oбpi}$ в диапазоне амплитуд от 2 мкм до 200 мкм на базовой частоте 160 Γ ц в соответствии с таблицей 6.

Таблица 6

Акселерометр ¹⁾	Uзад ²⁾ , мВ	S^{a}_{obpi} ,MKM	S_i^a , MKM	8, %
393B04	20,6	2		
393B04	30,6	5		
	61,3	10		
600 4 11	92,1	50		
608A11	143,2	100		
	225	200		

1) Для значений амплитуд размаха виброперемещения в диапазоне от 2 мкм до 10 мкм использовать вибропреобразователь 393В04, для значений амплитуд размаха виброперемещения в диапазоне от 10 мкм до 200 мкм использовать вибропреобразователь 608А11

2) Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра

- 7.3.1.9 Зафиксировать показания размаха виброперемещения S_i^a .
- 7.3.1.10 По результатам измерений вычислить погрешность измерения размаха виброперемещения $\delta_{S_i}^a$ в диапазоне амплитуд в % по формуле (3):

$$\delta_{Si}^{a} = \frac{S_{obji}^{a} - S_{i}^{a}}{S_{obji}^{a}} 100 \tag{3}$$

где $S^a_{oбрi}$ - заданное значение размаха виброперемещения, мкм;

- S_i^a измеренное значение размаха виброперемещения, мкм.
- 7.3.1.11 Выполнить п.п.7.3.1.1-7.3.1.10 для последующих каналов измерения вибрации.
- 7.3.1.12 Прибор считают выдержавшим поверку, если погрешности, вычисленные по формулам (1), (2) и (3), находится в пределах ±5 %.

7.3.2 Определение относительной погрешности измерения среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в рабочих диапазонах частот

Относительные погрешности измерения среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в рабочих диапазонах частот определять для многоканального измерительного блока КИС.

- 7.3.2.1 Собрать схему соединений в соответствии с Рисунком 1 Приложения А.
- 7.3.2.2 Задать последовательно значения СКЗ виброускорения $A^f_{oбp}$ в диапазоне частот от 0,5 Γ ц до 1250 Γ ц в соответствии с таблицей 7.

Таблица 7

Акселерометр ¹⁾	Uзад ²⁾ , мВ	Частота, Гц	$A_{o\delta p}^f$, M/c^2	A^f , M/c^2	8 f , %
	100	0,5	1,00		
	100	0,7	1,00		
393B04	100	0,8	1,00		
	100	0,9	1,00		
	100	1	1,00		
	100	2	10,00		
	100	5	10,00		
	100	10	10,00		
	100	20	10,00		
(00) 11	100	40	10,00		
608A11	100	100	10,00		
	100	200	10,00		
	100	500	10,00		
	100	1000	10,00		
	100	1250	10,00		

- 1) Для частот в диапазоне от 0,5 Γ ц до 2 Γ ц использовать вибропреобразователь 393В04, для частот в диапазоне от 2 Γ ц до 1250 Γ ц использовать вибропреобразователь 608А11
- 2) Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра
 - 7.3.2.3 Зафиксировать показания виброускорения A^{f}_{i} прибора.
- 7.3.2.4 Вычислить относительную погрешность измерения виброускорения δ^f_{Ai} в рабочем диапазоне частот в % по формуле (4):

$$\delta_{Ai}^{f} = \frac{A_{o\delta\rho}^{f} - A_{i}^{f}}{A_{o\delta\rho}^{f}} 100 \tag{4}$$

где A^f_{obs} - заданное значение виброускорения в диапазоне частот, м/с²;

 A^{f} - измеренное значение виброускорения в диапазоне частот, м/с².

7.3.2.5 Задать последовательно значения СКЗ виброскорости $V^f_{\rho\delta\rho}$ в диапазоне частот от 2 Γ ц до 1250 Γ ц в соответствии с таблицей 8.

Таблица 8

Акселерометр 1)	Uзад²), мВ	Частота, Гц	V , MM/c	V^{f} , MM/c	8, %
	13,2	2	10,00		
	16,2	2,5	10,00		
393B04	20,3	3	10,00		
	25,4	4	10,00		
	31,5	5	10,00		
	64	10	10,00		
	128	20	10,00		
	256	40	10,00		
608A11	640	100	10,00		
000A11	128	200	1,00		
	320	500	1,00		
	320	1000	0,50		
	400	1250	0,50		

1) Для частот в диапазоне от 2 Гц до 10 Гц использовать вибропреобразователь 393В04, для частот в диапазоне от 10 Гц до 1250 Гц использовать вибропреобразователь 608А11

2) Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра

7.3.2.6 Зафиксировать показания СКЗ виброскорости V^{f} .

7.3.2.7 Вычислить относительную погрешность измерения СКЗ виброскорости $\delta^f_{\ \nu_i}$ в диапазоне частот в % по формуле (5):

$$\delta_{V_i}^f = \frac{V_{o\delta p}^f - V_i^f}{V_{o\delta p}^f} 100 \tag{5}$$

где $V^f_{\ \alpha\beta\rho}$ - заданное значение СКЗ виброскорости в диапазоне частот, мм/с;

 V^{f} - измеренное значение СКЗ виброскорости в диапазоне частот, мм/с.

7.3.2.8 Задать последовательно значения размаха виброперемещения S^f_{obp} в диапазоне частот от 3,2 Γ ц до 400 Γ ц в соответствии с таблицей 9.

Таблица 9

Акселерометр 1)	Uзад ²⁾ , мВ	Частота, Гц	S' , MKM	S^{f} , mkm	81 , %
	10	3,2	10		- SI
393B04	20,6	4	10		
	30,6	5	10		
	61,3	6	10		
	143,2	10	10		
	573	20	100		
608A11	35,4	50	100		
	142	100	100		
	568,4	200	100		
	512	400	100		

1) Для частот в диапазоне от 3.2 Гц до 6 Гц использовать вибропреобразователь 393В04, для частот в диапазоне от 6 Гц до 400 Гц использовать вибропреобразователь 608А11

2) Действительные значения напряжения выставляются по мультиметру, с учетом коэффициента преобразования используемого акселерометра

- 7.3.2.9 Зафиксировать показания размаха виброперемещения S^f .
- 7.3.2.10 Вычислить относительную погрешность измерения размаха виброперемещения δ^f_{SI} в диапазоне частот в % по формуле (6):

$$\mathcal{S}^{f}_{Si} = \frac{S^{f}_{\alpha\delta\rho} - S^{f}_{i}}{S^{f}_{\alpha\delta\rho}} 100 \tag{6}$$

где S^f_{olip} - заданное значение размаха виброперемещения в диапазоне частот, мкм;

 $S^f_{\ \ i}$ - измеренное значение размаха виброперемещения в диапазоне частот, мкм.

7.3.2.11 Выполнить п.п. 7.3.2.1-7.3.2.10 для последующих каналов измерения вибрации.

7.3.2.12 Прибор считают выдержавшим поверку, если погрешности, вычисленные по формулам (4), (5) и (6), находятся в пределах $\pm 5\%$.

7.3.3 Определение относительной погрешности измерения среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в соответствующих диапазонах частот и амплитуд

Относительные погрешности измерения среднеквадратического значения виброускорения, среднеквадратического значения виброскорости и размаха виброперемещения в соответствующих диапазонах частот и амплитуд определять в комплекте с акселерометрами 608A11 (рег. №36261-07) и 393B04 (рег. №56990-14). При этом, нелинейность амплитудной характеристики акселерометров и неравномерность АЧХ акселерометра выбирать из соответствующих описаний типа.

7.3.3.1 По результатам измерения п.п. 7.3.1 и 7.3.2 вычислить относительную погрешность измерений среднеквадратического значения виброускорения δ_A , виброскорости δ_V и размаха виброперемещения δ_S в диапазоне частот и амплитуд при доверительной вероятности 0,95 в % по формуле (7):

$$\delta_{A,V,S} = \pm 1, 1\sqrt{(\delta_{i\max}^f)^2 + (\delta_{i\max}^a)^2 + (\delta_{BHII}^a)^2 + (\gamma_{HII}^a)^2 + (\delta_5)^2}$$
(7)

- где δ_3 погрешность рабочего эталона вибрации 2 разряда, использовавшегося при определении коэффициента преобразования акселерометров 608A11 и 393B04 на базовой частоте при их поверке, %;
- δ^f_{imax} наибольшая погрешность измерения соответствующего вибропараметра в диапазоне частот, %:
- $\delta_{i \max}^a$ наибольшая погрешность измерения соответствующего вибропараметра в диапазоне амплитуд, %;

 $\delta_{\it вип}$ - нелинейность амплитудной характеристики акселерометров 608A11 и 393B04, %;

 $\gamma_{\mathit{ип}}$ - неравномерность AЧX акселерометров 608A11 и 393B04, %.

7.3.3.2 Прибор считают выдержавшим поверку, если относительная погрешность измерения среднеквадратического значения виброускорения $\delta_{\scriptscriptstyle A}$, относительная погрешность измерения среднеквадратического значения виброскорости $\delta_{\scriptscriptstyle V}$ и относительная погрешность измерения размаха виброперемещения $\delta_{\scriptscriptstyle S}$, вычисленные по формуле (7) находятся в пределах ± 10 %.

7.4. Определение относительной погрешности измерений статических или медленно меняющихся сил

7.4.1. Собрать схему соединений в соответствии с Рисунком 1 Приложения А. Подключение датчиков весоизмерительных тензорезисторных М70К к измерительным каналам проводится в соответствии с перечнем измерительных каналов в формуляре ИПВС.056.000 ФО.

- 7.4.2. Установить на машину силоизмерительную ДО-2-5 датчик весоизмерительный тензорезисторный М70К первого измерительного канала статических или медленно меняющихся сил.
- 7.4.3. Последовательно задать на ДО-2-5 значения силы $P^a_{oбрi}$, в диапазоне от 10000 до 50000 Н в соответствии с таблицей 10.

Таблина 10

P^a_{colpi} , H	$P^a i$, H	δ_i^P , %
10000		
20000		
30000 40000		
40000		
50000		

- 7.4.4. Зафиксировать измеренные прибором показания силы $P^a i$.
- 7.4.5. По результатам измерений вычислить относительную погрешность статических или медленно меняющихся сил тока δ_i^P в % по формуле (8):

$$\delta_i^P = \frac{P_{o\delta pi}^a - P_i^a}{P_{o\delta pi}^a} \times 100 \tag{8}$$

где P_{obst}^a - заданное на машине силоизмерительной ДО-2-5 значение силы, кг;

 $P^{a}i$ - измеренное значение силы, Н.

- 7.4.6. Выполнить п.п.7.4.1-7.4.5 для последующих измерительных каналов прибора.
- 7.4.7. Вычислить относительную погрешность измерения статических или медленно меняющихся сил δ_n при доверительной вероятности 0,95 в % по формуле (9):

$$\delta_p = \pm 1.1 \sqrt{(\max \delta_i^a)^2 + (\delta_{9C})^2}$$
(9)

где δ_{2C} - погрешность машины силоизмерительной ДО-2-5, %;

 $\max \ \delta_i^{\ \rho}$ - наибольшее значение погрешности, вычисленное по формуле (8), %.

- 7.4.8. Прибор считают выдержавшим поверку, если относительная погрешность измерений статических или медленно меняющихся сил δ_{p} находится в пределах \pm 5 %.
- 7.5. Определение относительной погрешности измерения напряжения постоянного тока
- 7.5.1. Подключить канал измерений напряжения постоянного тока к генератору сигналов произвольной формы Agilent 33220A в соответствии со схемой Рисунка 1 Приложения A.
- 7.5.2. Последовательно задать на входе канала измерений напряжения постоянного тока значения из ряда *Unocm^a*_{offin}, в соответствии с таблицей 11.

Таблица 11

Unnoc α , MB	Unnoc , , MB	$\delta nocm_{Ui}^{P}$, %
0		
200		
400		
600		

Продолжение таблицы 11

Unnoc a , MB	Unnoc , MB	$\delta nocm_{U_i}^P$, %
800		
1000		
1200		
1400		
1600		
1800		
2000		
2200		

- Зафиксировать показания напряжений Unocm^a, измеренные прибором.
- 7.5.4. По результатам измерений вычислить относительную погрешность измерения напряжений постоянного тока $\delta nocm_{th}^{\sigma}$ в % по формуле (10):

$$\delta nocm_{\ell ii}^{a} = \frac{Unocm_{obpi}^{a} - Unocm_{i}^{a}}{Unocm_{obpi}^{a}} 100$$
(10)

где *Unocm а заданное значение напряжения постоянного тока*, В;

Unocm["] - измеренное значение напряжения постоянного тока, В.

- 7.5.5. Выполнить п.п.7.5.1-7.5.4 для последующих измерительных каналов прибора.
- 7.5.6. Вычислить относительную погрешность измерения напряжения постоянного тока δ_{nocmU} при доверительной вероятности 0,95 в % по формуле (11):

$$\delta_{nocmU} = \pm 1, 1\sqrt{(\max \delta_{nocmU}^a)^2 + (\delta_{HIIT})^2}$$
(11)

где $\delta_{{\scriptscriptstyle MIII}}$ - погрешность генератора постоянного тока, %;

 $\max \delta nocm_{li}^a$ - наибольшее значение погрешности, вычисленное по формуле (10), %.

- 7.5.7. Прибор считают выдержавшим поверку, если относительная погрешность измерения напряжения постоянного тока находится в пределах \pm 5 %.
- 7.6. Определение относительной погрешности измерения частоты вращения ротора
- Установить на тахометрической установке типа УТ05-60 тахометрический датчик из комплекта прибора.
 - 7.6.2. Задать последовательно частоты вращения $F_{oбpi}$ об/мин в соответствии с таблицей 12. Таблица 12

$F_{oбpb}$ об/мин	F_{Ti} , об/мин	$\delta_{\scriptscriptstyle Fi}$, %
10		
60		
600		
1200		
3600		
12000		
24000		

7.6.3. Зафиксировать показания частоты вращения F_{Ti} прибора.

7.6.4. Вычислить относительную погрешность измерения частоты вращения δ_{F_i} в % по формуле (12):

$$\delta_{F_l} = \frac{F_{o\delta\rho l} - F_{T_l}}{F_{o\delta\rho l}} 100 \tag{12}$$

где $F_{oбрi}$ - заданное значение частоты вращения, Γ ц;

 F_{Ti} - измеренное значение частоты вращения, Γ ц.

7.6.5. Определить относительную погрешность измерения частоты вращения ротора при доверительной вероятности 0,95 в % по формуле (13):

$$\Delta_F = 1,1 * \sqrt{\delta_{FMarke}^2 + \delta_{obp}^2}$$
(13)

где $\delta_{F_{MAKC}}$ - наибольшая из погрешностей, вычисленных по формуле (12);

 $\delta_{oбp}$ - погрешность образцовой установки УТ05-60, %.

7.6.6. Прибор считают выдержавшим поверку, если относительная погрешность измерения частоты вращения ротора находится в пределах ±1,0 %.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- Результаты поверки считаются положительными, если прибор выдержал поверку при выполнении всех пунктов 7.1-7.6 настоящей методики.
- 8.2 Результаты поверки считаются отрицательными, если прибор не выдержал поверку при выполнении хоты бы одного из пунктов 7.1-7.6 настоящей методики.
- 8.3 По результатам проведения поверки составляется протокол, содержащий данные измерений, а так же сведения об условиях поверки, применяемых средствах, дату и подписи лиц, проводивших поверку.
- 8.4 На прибор, прошедший поверку с положительными результатами, оформляется свидетельство установленного образца и, при первичной поверке, делается запись о проведении поверки в соответствующем разделе формуляра ИПВС.056.000ФО с констатацией удовлетворительного результата и заключением «годен» и нанесением знака поверки, знак поверки также наносится на прибор в соответствии с рисунком 1 описания типа.
- 8.5 В случае несоответствия результатов поверки хотя бы одному из пунктов настоящей методики оформляется извещение о непригодности.

Главный специалист отдела 433 ФБУ «Тест-С.-Петербург»

Burl

А.Ю. Смирнов

Приложение А. Схемы соединений при поверке

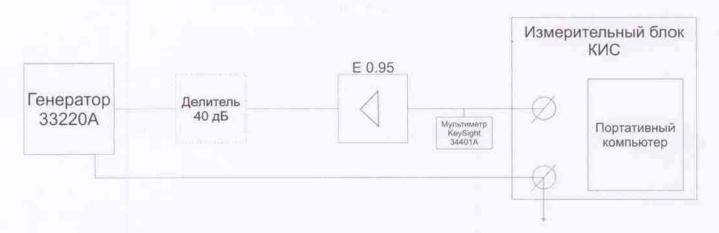


Рисунок А.1. Схема соединений

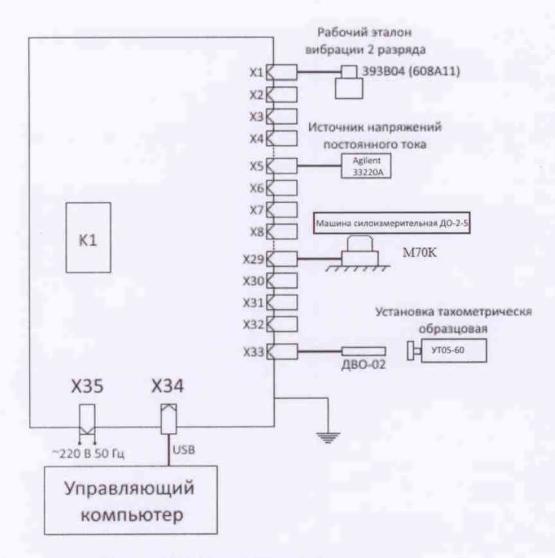


Рисунок А.2. Схема соединений

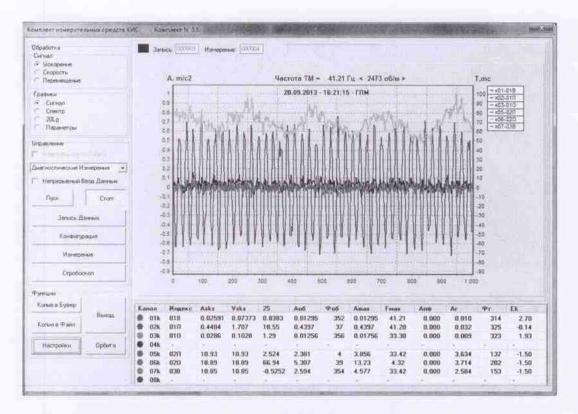


Рисунок А.3. Вид экрана с таблицей измерений и графиками сигналов