ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы кислорода, азота, водорода Fusion Master ONH

Назначение средства измерений

Анализаторы кислорода, азота, водорода Fusion Master ONH предназначены для измерения массовой доли кислорода, азота, водорода в различных материалах.

Описание средства измерений

Принцип действия анализатора основан на методе горячей экстракции (метод восстановительного плавления, метод нагрева) в потоке инертного газа.

Образец расплавляется в графитовом тигле, помещенном в импульсную печь сопротивления. Импульсная печь оборудована системой водяного охлаждения. Температура печи и скорость нагрева задаются с внешнего компьютера, по ходу анализа контролируется мощность, ток, наличие утечек газа.

В результате нагрева и плавления из образца в газообразном виде выделяются кислород (реагирует с материалом тигля с образованием монооксида углерода), азот, водород и вместе с инертным газом-носителем, в качестве которого могут использоваться гелий, аргон или азот, поступают из печи в систему детектирования.

Система детектирования содержит независимые детекторы, служащие для определения содержания кислорода, водорода и азота. Содержание кислорода измеряется с использованием инфракрасного детектора (ИК ячейки). Содержание водорода и азота измеряется с использованием термокондуктометрической (ТКМ) ячейки. Содержание кислорода определяется в 2-х диапазонах, на каждый диапазон устанавливается отдельный инфракрасный детектор. Содержание водорода и азота определяется в 2-х диапазонах с использованием термокондуктометрических детекторов.

Управление работой анализатора и обработка результатов измерений осуществляется с помощью персонального компьютера и установленного на нем программного обеспечения. Программное обеспечение осуществляет обработку сигналов с детекторов и производит расчет содержания элементов с учетом массы навески, а также включает в себя накопление данных и графическое отображение кинетики анализа.

Управление работой анализатора и обработка результатов измерений осуществляется с помощью встроенного микропроцессора и персонального компьютера.

Градуировка анализатора производится по стандартным образцам, аттестованным по содержанию газов.

Рисунок 1 - Внешний вид анализатора Fusion Master ONH

Пломбирование анализаторов кислорода, азота, водорода Fusion Master ONH не предусмотрено.

Программное обеспечение

Программное обеспечение идентифицируется при включении анализатора путем вывода на экран номера версии. Программное обеспечение осуществляет обработку сигналов с детекторов и производит расчет содержания элементов с учетом массы навески, а также включает в себя накопление данных и графическое отображение кинетики анализа.

Метрологически значимая часть ПО СИ и измеренные данные защищены с помощью специальных средств защиты. Конструктивно анализаторы имеют защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений, реализованную изготовителем на этапе производства путем установки системы защиты микроконтроллера от чтения и записи.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Fusion Master ONH
Номер версии (идентификационный номер) ПО	не ниже 2.1.22.0

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение		
Диапазон измерений массовой доли, %			
- азот	от 0, 0001 до 0,3000		
- кислород	от 0, 0001 до 0,0250		
	от 0, 0020 до 0,5000		
- водород	от 0,00008 до 0,15000		
Пределы допускаемой относительной погрешности измерений, %	Определяемый элемент		
Для поддиапазонов измерений, % массовой	Кислород	Азот	Водород
доли			
От 0,0001 до 0,0005 включ.	±40	±40	-
св. 0,0005 до 0,0010 включ.	±30	±30	-
св. 0,0010 до 0,0020 включ.	±20	±20	-
св. 0,0020 до 0,0200 включ.	±15	±15	-
св. 0,0200 до 0,0500 включ.	±8	±8	-
св. 0,0500 до 0,1000 включ.	±5	±5	-
св. 0,1000 до 0,3000 включ.	-	±3	-
св. 0,1000 до 0,5000 включ.	±3	-	
от 0,00008 до 0,00010 включ.	-	-	±30
св. 0,00010 до 0,00030 включ.	-	-	±25
св.0,00030 до 0,00060 включ.	-	-	±20
св.0,00060 до 0,00200 включ.	-	-	±15
св.0,00200 до 0,01000 включ.	-	-	±10
св.0,01000 до 0,05000 включ.	-	-	±5
св. 0,05000 до 0,15000 включ.	-	-	±3

Таблица 3 - основные технические характеристики

таолица з основные техни теские характериет	
Наименование характеристики	Значение
Время анализа в зависимости от материала	50
образца и навески, с, не более	
Вес навески, г	0,5
Габаритные размеры (В×Ш×Д), мм, не более	700×830×600
Потребляемая мощность, кВ А	7
Напряжение питания при частоте 50/60 Гц, В	220±10
Газ-носитель	Аргон, азот или гелий
- давление, бар	2
- чистота, %	99,999
Условия эксплуатации:	
температура окружающей среды, °С	от +15 до +35
относительная влажность воздуха, %	от 20 до 80
атмосферное давление, кПа	от 84 до 106,7

Знак утверждения типа

наносится на каждый экземпляр анализатора в виде наклейки, а также на титульный лист руководства по эксплуатации анализатора типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Анализатор	Fusion Master ONH	1 шт.
Компьютер		1 шт.
Стартовый набор расходных материалов и запчастей		1 шт.
Редуктор для баллона с инертным газом		1 шт.
Инфракрасная печь		1 шт.
Комплект расходных материалов		1 компл.
Комплект запасных частей		1 компл.
Руководство по эксплуатации		1 экз.
Методика поверки	РТ-МП-4047-448-2017	1 экз.

Поверка

осуществляется по документу РТ-МП-4047-448-2017 «ГСИ. Анализаторы кислорода, азота, водорода Fusion Master ONH. Методика поверки», утвержденному ФБУ «Ростест - Москва» 14.03.2017 г.

Основные средства поверки:

Государственные стандартные образцы состава сплавов ГСО 7973-2001, ГСО 8725-2005, ГСО 8446-2003, ГСО 8450-2003, ГСО 9110-2008, ГСО 8445-2003, ГСО 8448-2003, ГСО 8447-2003

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью в соответствии с аттестованной методикой измерений.

Знак поверки наносится на свидетельство о поверки в виде оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам кислорода, азота, водорода Fusion Master ONH

МИ 2639-2001 Государственная поверочная схема для средств измерений массовой доли компонентов в веществах и материалах

Техническая документация фирмы NCS Testing Technology (Germany) GmbH, Германия

Изготовитель

NCS Testing Technology (Germany) GmbH, Германия Адрес: Blindeisenweg 39, 41468 Neuss NRW, Germany Телефон: +49-2131-663592-0, +49-2131-663592-22

Web-сайт: www.ncs-germany.com

Заявитель

Закрытое акционерное общество «Налхо Техно» (ЗАО «Налхо Техно»)

ИНН7720513256

Юридический адрес: 123585, Москва, ул. М. Тухачевского, д. 32-2-37

Телефон: +7(499)795-77-90; Факс: +7(499)795-77-90

E-mail: info@nalkho.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, Москва, Нахимовский пр., 31

Телефон: +7(499)129-19-11 Факс: +7(499)124-99-96 E-mail: info@rostest.ru

Аттестат аккредитации Φ БУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

$\alpha \alpha$	_	٠	_
C.C.	1	ОЛУ	уоев

М.п.	"	,,,	2017 г.
IVI.II.	**	<i>>></i>	201/1.