ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

Заместитель директора по производственной метрологии ФГУП «ВНИИМС»

мл. «<u>23-</u>» шума 2017 г.

ПРЕОБРАЗОВАТЕЛИ ВИБРОПЕРЕМЕЩЕНИЯ МОДЕЛИ HOURISS MLS-9

МЕТОДИКА ПОВЕРКИ

MΠ 204/3-07-2017

ПРЕОБРАЗОВАТЕЛИ ВИБРОПЕРЕМЕЩЕНИЯ МОДЕЛИ HOURISS MLS-9

МЕТОДИКА ПОВЕРКИ МП 204/3-07-2017

		Введена в действие	C
«	>>	20	г.

введение.

Настоящая методика распространяется на преобразователи виброперемещения модели Houriss MLS-9 (далее - вибропреобразователи) изготавливаемые фирмой Beijing Houriss Control Technology Co., Ltd., Китай, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении первичной и периодической поверок, выполняют операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта	Проведение операции при поверке		
опоридии		первичной	периодической	
1	2	3	4	
Внешний осмотр	7.1	да	да	
Опробование	7.2	да	да	
Определение отклонения ко- эффициента преобразования от номинального значения	7.3	да	да	
Определение нелинейности амплитудной характеристи-ки	7.4	да	да	
Определение неравномерно- сти амплитудно-частотной характеристики	7.5	да	да	

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки необходимо применять основные и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2

Номер пункта	Наименование и тип основного или вспомогательного средства повер-
поверки	ки, обозначение документа, регламентирующего технические требова-
	ния и (или) метрологические и основные технические характеристики.
7.3-7.5	установка 2-го разряда по ГОСТ Р 8.800-2012
1.3-1.3	мультиметр цифровой Agilent 34401A (г/р № 54848-13)

2.2. Допускается применять другие средства поверки, не приведенные в перечне, но обеспечивающие определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1. К поверке допускаются лица, прошедшие обучение и имеющие свидетельство и аттестат поверителя.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При проведении поверки должны соблюдаться требования безопасности, установленные ГОСТ 12.1.019-2009, ГОСТ 12.2.091-2012 и эксплуатационной документацией фирмы-изготовителя.

5. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °С

 20 ± 5

- относительная влажность окружающего воздуха, %

 60 ± 20

- атмосферное давление, кПа

 101 ± 4

- напряжение источника питания поверяемого вибропреобразователя должно соответствовать значению, указанному в технической документации.

6. ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

- 6.1. При подготовке к проведению поверки должно быть установлено соответствие вибропреобразователей следующим требованиям:
 - отсутствие механических повреждений корпуса, соединительных кабелей и электрических разъемов;
 - резьбовые части электрических разъемов не должны иметь видимых повреждений.
- 6.2. В случае несоответствия вибропреобразователя хотя бы одному из указанных в п. 6.1 требований, он считается непригоден к применению, поверка не производится до устранения выявленных замечаний.
- 6.3. Все приборы должны быть прогреты и подготовлены к работе в соответствии со своим руководством по эксплуатации.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр

При внешнем осмотре устанавливают соответствие комплектности и маркировки требованиям эксплуатационной документации, а также отсутствие механических повреждений корпуса, соединительных кабелей и разъемов.

7.2. Опробование

- 7.2.1. Проверяют работоспособность вибропреобразователя в соответствии с эксплуатационной документацией.
 - 7.3. Определение отклонения коэффициента преобразования от номинального значения.

Определение отклонения коэффициента преобразования от номинального значения производится на эталонной виброустановки 2-го разряда по ГОСТ Р 8.800-2012. Вибропреобразователь установить на виброустановку, соединить выход вибропреобразователя со входом мультиметра. На виброустановке воспроизвести виброперемещение амплитудой 100 мкм на базовой частоте 40 Гц. Определить действительное значение коэффициента преобразования по формуле:

$$K_{\partial} = U_{\text{Gbix}} / S_{\text{ex}} \tag{1}$$

где:

 $U_{\rm вых}$ — значение напряжения, измеренное мультиметром на выходе испытываемого вибропреобразователя;

 $S_{\rm ex}$ — значение виброперемещения, определяемое по показаниям эталонной виброустановки.

Отклонение коэффициента преобразования от номинального значения вычислить по формуле:

$$\delta = \frac{K_{o} - K_{on}}{K_{on}} \cdot 100(\%) \tag{2}$$

где:

 K_{on} – номинальное (паспортное) значение коэффициента преобразования.

Полученные значения занести в таблицу 3.

Таблица 3

		Действительное коэффициента пре		коэффициента ия, %
мВ/мкм		ния, мВ/мкм	 	
	8			

Преобразователи виброперемещения модели Houriss MLS-9 считается прошедшей поверку по данному пункту, если полученные значения относительной погрешности измерений не превышают: $\pm 5\%$.

7.4. Определение нелинейности амплитудной характеристики.

Определение нелинейности амплитудной характеристики производится на частоте 40 Гц не менее чем в пяти точках диапазона измерения виброперемещения, включая верхний и нижний пределы. Испытываемый вибропреобразователь устанавливают на вибростенде эталонной виброустановки и подсоединяют выход вибропреобразователя к входу мультиметра. Нелинейность определяют по формуле:

$$\delta = \frac{K_i - K_o}{K_o} 100 \,(\%) \tag{3}$$

где

 K_i – коэффициент преобразования при і-том значении виброперемещения;

 K_{∂} — действительное значение коэффициента преобразования, определенное в п. 4.2.1 по формуле (1).

Полученные значения занести в таблицу 4.

Таблица 4

Задаваемое значение виброперемещения, мкм	Измеренное напряжение на выходе преобразователя, мВ	Коэффициент преобразования виброперемещения, мВ/мкм	Нелинейности амплитудной характеристики, %

Преобразователи виброперемещения модели Houriss MLS-9 считается прошедшей поверку по данному пункту, если полученные значения относительной погрешности измерений не превышают: $\pm 5\%$.

7.5. Определение неравномерности амплитудно-частотной характеристики.

Определение неравномерности амплитудно-частотной характеристики относительно базовой частоты 40 Гц произвести на эталонной виброустановке 2-го разряда по ГОСТ Р 8.800-2012. Вибропреобразователь установить на виброустановку, соединить выход вибропреобразователя со входом мультиметра. На вибростенде воспроизводят виброперемещение, равное 100 мкм в пяти точках диапазона частот, соответствующих 10, 30, 50, 70 и 100% от верхнего значения диапазона частот. Амплитуду колебаний поддерживать постоянной. Определить действительное значение коэффициента преобразования по формуле 1 при каждом значении частоты. Неравномерность амплитудно-частотной характеристики определить по формуле:

$$\gamma = 20 \lg \frac{K_i}{K_{on}} \quad (\partial E)$$
 (4)

где

 K_i — значение коэффициента преобразования на одной из указанных выше частот; K_{on} — значение коэффициента преобразования на частоте 40 Γ ц.

Полученные значения занести в таблицу 5.

Таблица 3

Задаваемое значение частоты, Гц	Коэффициент преобразования виброперемещения, мВ/мкм	

Преобразователи виброперемещения модели Houriss MLS-9 считается прошедшей поверку по данному пункту, если полученные значения относительной погрешности измерений не превышают: ±3 дБ.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1. На преобразователи виброперемещения модели Houriss MLS-9, признанные годными при поверке, делают отметку в паспорте или выдают свидетельство о поверке по форме, установленной Приказом Минпромторга России № 1815 от 02.07.2015г.
- 8.2. Преобразователи виброперемещения модели Houriss MLS-9, не удовлетворяющие требованиям настоящей методики, к применению не допускают и выдают извещение о непригодности с указанием причин по форме, установленной Приказом Минпромторга России № 1815 от 02.07.2015г.

Начальник отдела 204

Начальник лаборатории 204/3

Разработчик Инженер лаборатории 204/3 А.Е. Рачковский

А.Г. Волченко

Д.В.Матвеев